• Anandakumar Karipot

      Articles written in Journal of Earth System Science

    • Estimating gross primary productivity of a tropical forest ecosystem over north-east India using LAI and meteorological variables

      Pramit Kumar Deb Burman Dipankar Sarma Mathew Williams Anandakumar Karipot Supriyo Chakraborty

      More Details Abstract Fulltext PDF

      Tropical forests act as a major sink of atmospheric carbon dioxide, and store large amounts of carbon in biomass. India is a tropical country with regions of dense vegetation and high biodiversity. However due to the paucity of observations, the carbon sequestration potential of these forests could not be assessed in detail so far. To address this gap, several flux towers were erected over different ecosystems in India by Indian Institute of Tropical Meteorology as part of the MetFlux India project funded by MoES (Ministry of Earth Sciences, Government of India). A 50 m tall tower was set up over a semi-evergreen moist deciduous forest named Kaziranga National Park in north-eastern part of India which houses a significant stretch of local forest cover. Climatically this region is identified to be humid sub-tropical. Here we report first generation of the in situ meteorological observations and leaf area index (LAI) measurements from this site. LAI obtained from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) is compared with the in situ measured LAI. We use these in situ measurements to calculate the total gross photosynthesis (or gross primary productivity, GPP) of the forest using a calibrated model. LAI and GPP show prominent seasonal variation. LAI ranges between 0.75 in winter to 3.25 in summer. Annual GPP is estimated to be 2.11kg C m−2year−1.

    • Seasonal variation of evapotranspiration and its effect on the surface energy budget closure at a tropical forest over north-east India

      Pramit Kumar Deb Burman Dipankar Sarma Ross Morrison Anandakumar Karipot Supriyo Chakraborty

      More Details Abstract Fulltext PDF

      This study uses 1 yr of eddy covariance (EC) flux observations to investigate seasonal variations in evapotranspiration (ET) and surface energy budget (SEB) closure at a tropical semi-deciduous forest located in north-east India. The annual cycle is divided into four seasons, namely, pre-monsoon, monsoon, post-monsoon and winter. The highest energy balance closure (76%) is observed during pre-monsoon, whereas the lowest level of closure (62%) is observed during winter. Intermediate closure of 68% and 72% is observed during the monsoon and post-monsoon seasons, respectively. Maximum latent heat flux during winter (150 W m$^{-2}$) is half of the maximum latent heat (300 W m$^{-2}$) flux during the monsoon. ET is a controlling factor of SEB closure, with the highest rates of closure corresponding to the periods of the highest ET. The Bowen ratio ranges from 0.93 in winter to 0.27 during the monsoon. This is the first time the role of ET in the seasonal variation of SEB closure has been reported for any ecosystem in north-east India using EC measurements.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.