• Abhishek Sanskrityayn

      Articles written in Journal of Earth System Science

    • Analytical solution of advection–diffusion equation in heterogeneous infinite medium using Green’s function method

      Abhishek Sanskrityayn Naveen Kumar

      More Details Abstract Fulltext PDF

      Some analytical solutions of one-dimensional advection–diffusion equation (ADE) with variable dispersion coefficient and velocity are obtained using Green’s function method (GFM). The variability attributes to the heterogeneity of hydro-geological media like river bed or aquifer in more general ways than that in the previous works. Dispersion coefficient is considered temporally dependent, while velocity is considered spatially and temporally dependent. The spatial dependence is considered to be linear and temporal dependence is considered to be of linear, exponential and asymptotic. The spatio-temporal dependence of velocity is considered in three ways. Results of previous works are also derived validating the results of the present work. To use GFM, a moving coordinate transformation is developed through which this ADE is reduced into a form, whose analytical solution is already known. Analytical solutions are obtained for the pollutant’s mass dispersion from an instantaneous point source as well as from a continuous point source in a heterogeneous medium. The effect of such dependence on the mass transport is explained through the illustrations of the analytical solutions.

    • Analytical solution for solute transport from a pulse point source along a medium having concave/convex spatial dispersivity within fractal and Euclidean framework

      VINOD KUMAR BHARATI VIJAY P SINGH ABHISHEK SANSKRITYAYN NAVEEN KUMAR

      More Details Abstract Fulltext PDF

      In the present study, analytical solutions of the advection dispersion equation (ADE) with spatially dependent concave and convex dispersivity are obtained within the fractal and the Euclidean frameworks by using the extended Fourier series method. The dispersion coefficient is considered to be proportional to the nth power of a non-homogeneous quadratic spatial function, where the index n is considered to vary between 0 and 1.5 so that the spatial dependence of dispersivity remains within the limit to describe the heterogeneity in the fractal framework. Real values like n ¼ 0.5 and 1.5 are considered to delineate heterogeneity of the aquifer in the fractal framework, whereas integral values like n = 1 represent thesame in the Euclidean sense. A concave or convex variation is free from demanding a limiting value as in the case of linear variation, hence it is more appropriate in the ambience of many disciplines in which ADE is used. In this study, concentration at the source site remains uniform until the source is present and becomes zero once it is annihilated forever. The analytical solutions, validated through the respective numerical solutions, are obtained in the form of an extended Fourier series with only first five terms. They are convergent to the desired concentration pattern and are stable with the Peclet number. It has been possible because of the formulation of a new Sturm–Liouville problem with advective information. The analytical solutions obtained in this paper are novel.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.