• A K Singh

      Articles written in Journal of Earth System Science

    • A study on precursors leading to geomagnetic storms using artificial neural network

      Gaurav Singh A K Singh

      More Details Abstract Fulltext PDF

      Space weather prediction involves advance forecasting of the magnitude and onset time of major geomagneticstorms on Earth. In this paper, we discuss the development of an artificial neural network-basedmodel to study the precursor leading to intense and moderate geomagnetic storms, following halo coronalmass ejection (CME) and related interplanetary (IP) events. IP inputs were considered within a 5-daytime window after the commencement of storm. The artificial neural network (ANN) model training,testing and validation datasets were constructed based on 110 halo CMEs (both full and partial halo andtheir properties) observed during the ascending phase of the 24th solar cycle between 2009 and 2014. Thegeomagnetic storm occurrence rate from halo CMEs is estimated at a probability of 79%, by this model.

    • Frequency characteristics of geomagnetic induction anomalies in Saurashtra region

      P V Vijaya Kumar P B V Subba Rao C K Rao A K Singh P Rama Rao

      More Details Abstract Fulltext PDF

      Magnetovariational studies were carried out along four different EW profiles in Saurashtra region in different phases, during January 2007–March 2012. Transient geomagnetic field variations (X, Y horizontal field and Z vertical field components) recorded along these profiles are analyzed to infer the electrical conductivity distribution of the region. The vertical field transfer functions which depict the characteristics of electrical conductivity distribution are presented in the form of induction arrows. From the spatial distribution of these arrows, it is inferred that the sediments filling the offshore basins have more conductivity than those basins in Saurashtra region. Z/H pseudo sections along the four profiles in conjunction with tectonics and other geophysical methods permit to infer that the conductivity anomaly in the eastern part of the profiles is associated with the crustal/lithosphere thinning. The possible cause for these anomalies may be explained in terms of partial melts associated with mafic intrusions, related to Deccan and pre-Deccan volcanism. High resistive block related to underplating mantle material has been reflected in 1D models of long period magnetotelluric data and its thickness reduces from west to east. Lithosphere–asthenosphere boundary varies from 80 to 100 km.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.