• A S Unnikrishnan

      Articles written in Journal of Earth System Science

    • Simulation of barotropic wind-driven circulation in the upper layers of Bay of Bengal and Andaman Sea during the southwest and northeast monsoon seasons using observed winds

      N Bahulayan A S Unnikrishnan

      More Details Abstract Fulltext PDF

      A two-dimensional, nonlinear, vertically integrated model was used to simulate depth-mean wind-driven circulation in the upper Ekman layers of the Bay of Bengal and Andaman Sea. The model resolution was one third of a degree in the latitude and longitude directions. Monthly mean wind stress components used to drive the model were obtained from the climatic monthly mean wind data compiled by Hastenrath and Lamb. A steady-state solution was obtained after numerical integration of the model for 15 days. The sensitivity of the model to two types of open boundary conditions, namely, a radiation type and clamped type, was tested. A comparison of simulated results for January with available ship drift data showed that the application of the latter along the open boundary could reproduce all the observed features near the boundary and the interior of the model domain. The model was integrated for 365 days to study the circulation during the southwest and northeast monsoon seasons. The model was successful in simulating the broad features of circulation including gyres and eddies observed during both the seasons, the development of north equatorial current during the northeast monsoon period and eastward moving monsoon drift current up to 90°E during the southwest monsoon season. During the latter season, two anticyclonic gyres were observed in the central and the southern parts of the Bay. A cyclonic type of circulation was prevalent in the central and western parts of the Bay of Bengal during the northeast monsoon months of November and December. The simulated western boundary current along the east coast of India, flows northward and southward during the southwest and northeast monsoon seasons respectively. It is presumed that this western boundary current, simulated during both the seasons, is locally wind-driven.

    • Tidal propagation in the Gulf of Khambhat, Bombay High, and surrounding areas

      A S Unnikrishnan S R Shetye G S Michael

      More Details Abstract Fulltext PDF

      The continental shelf on the west coast of India is widest off Bombay and leads into a strongly converging channel, the Gulf of Khambhat. Tides in the Gulf are among the largest on the coast. We use data on amplitude and phase of major semi-diurnal and diurnal constituents at forty-two ports in the Gulf and surrounding areas to define characteristics of the tides. We then use a barotropic numerical model based on shallow water wave equations to simulate the sea level and circulation in the region. The model is forced by prescribing the tide along the open boundaries of the model domain. Observed sea level at Bombay and currents from the Bombay High region at the centre of the model domain and from a shallow station off the port of Dahanu compare favourably with the fields simulated by the model. The simulated amplitudes and phases of the four most prominent tidal constituents also compare favourably with those observed along the coast, except at a few locations where the model spatial resolution (6.37 km × 6.37 km) appears to be inadequate to resolve the local geometry. Though this encourages us to conclude that the circulation in the region is dominated by barotropic tides, a concern is that the observational database on hydrography and directly measured currents in the region is weak.

    • Hydrography and water masses in the southeastern Arabian Sea during March–June 2003

      S S C Shenoi D Shankar G S Michael J Kurian K K Varma M R Ramesh Kumar A M Almeida A S Unnikrishnan W Fernandes N Barreto C Gnanaseelan R Mathew K V Praju V Mahale

      More Details Abstract Fulltext PDF

      This paper describes the hydrographic observations in the southeastern Arabian Sea (SEAS) during two cruises carried out in March–June 2003 as part of the Arabian Sea Monsoon Experiment. The surface hydrography during March–April was dominated by the intrusion of low-salinity waters from the south; during May–June, the low-salinity waters were beginning to be replaced by the highsalinity waters from the north. There was considerable mixing at the bottom of the surface mixed layer, leading to interleaving of low-salinity and high-salinity layers. The flow paths constructed following the spatial patterns of salinity along the sections mimic those inferred from numerical models. Time-series measurements showed the presence of Persian Gulf and Red Sea Waters in the SEAS to be intermittent during both cruises: they appeared and disappeared during both the fortnight-long time series.

    • Improved bathymetric datasets for the shallow water regions in the Indian Ocean

      B Sindhu I Suresh A S Unnikrishnan N V Bhatkar S Neetu G S Michael

      More Details Abstract Fulltext PDF

      Ocean modellers use bathymetric datasets like ETOPO5 and ETOPO2 to represent the ocean bottom topography. The former dataset is based on digitization of depth contours greater than 200m, and the latter is based on satellite altimetry. Hence, they are not always reliable in shallow regions. An improved shelf bathymetry for the Indian Ocean region (20°E to 112°E and 38°S to 32°N) is derived by digitizing the depth contours and sounding depths less than 200m from the hydrographic charts published by the National Hydrographic Office, India. The digitized data are then gridded and used to modify the existing ETOPO5 and ETOPO2 datasets for depths less than 200 m. In combining the digitized data with the original ETOPO dataset, we apply an appropriate blending technique near the 200m contour to ensure smooth merging of the datasets. Using the modified ETOPO5, we demonstrate that the original ETOPO5 is indeed inaccurate in depths of less than 200m and has features that are not actually present on the ocean bottom. Though the present version of ETOPO2 (ETOPO2v2) is a better bathymetry compared to its earlier versions, there are still differences between the ETOPO2v2 and the modified ETOPO2. We assess the improvements of these bathymetric grids with the performance of existing models of tidal circulation and tsunami propagation.

  • Journal of Earth System Science | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.