• A Roy

      Articles written in Journal of Earth System Science

    • Late Archaean mantle metasomatism below eastern Indian craton: Evidence from trace elements, REE geochemistry and Sr—Nd—O isotope systematics of ultramafic dykes

      A Roy A Sarkar S Jeyakumar S K Aggrawal M Ebihara H Satoh

      More Details Abstract Fulltext PDF

      Trace, rare earth elements (REE), Rb-Sr, Sm-Nd and O isotope studies have been carried out on ultramafic (harzburgite and lherzolite) dykes belonging to the newer dolerite dyke swarms of eastern Indian craton. The dyke swarms were earlier considered to be the youngest mafic magmatic activity in this region having ages not older than middle to late Proterozoic. The study indicates that the ultramafic members of these swarms are in fact of late Archaean age (Rb-Sr isochron age 2613 ± 177 Ma, Sri ∼ 0.702 ± 0.004) which attests that out of all the cratonic blocks of India, eastern Indian craton experienced earliest stabilization event. Primitive mantle normalized trace element plots of these dykes display enrichment in large ion lithophile elements (LILE), pronounced Ba, Nb and Sr depletions but very high concentrations of Cr and Ni. Chondrite normalised REE plots exhibit light REE (LREE) enrichment with nearly flat heavy REE (HREE; (ΣHREE)N ∼ 2–3 times chondrite, (Gd/Yb)N ∼ 1). The εNd(t) values vary from +1.23 to -3.27 whereas δ18O values vary from +3.16‰ to +5.29‰ (average +3.97‰±0.75‰) which is lighter than the average mantle value. Isotopic, trace and REE data together indicate that during 2.6 Ga the nearly primitive mantle below the eastern Indian Craton was metasomatised by the fluid (± silicate melt) coming out from the subducting early crust resulting in LILE and LREE enriched, Nb depleted, variable εNd, low Sri(0.702) and low δ18O bearing EMI type mantle. Magmatic blobs of this metasomatised mantle were subsequently emplaced in deeper levels of the granitic crust which possibly originated due to the same thermal pulse.

    • Palynostratigraphy and age correlation of subsurface strata within the sub-basins in Singrauli Gondwana Basin, India

      Vijaya Archana Tripathi A Roy Saibal Mitra

      More Details Abstract Fulltext PDF

      In the study area, changes in the facies of sediments and spores-pollen content appear to be all causally linked with the depositional set-up. Here, the qualitative and quantitative changes observed in the spores-pollen assemblages have led to recognize 10 Assemblage-zones representing from that earliest Permian in the Talchir Formation to that latest Late Triassic in the Parsora Formation. These sporespollen assemblages are obtained from the wider parts in the Singrauli Gondwana Basin that includes (i) Moher sub-basin (boreholes SSM-1 and 2), and (ii) Singrauli main sub-basin (boreholes SMJS-2, 3 and SMBS-1). The progressively changing spores-pollen content infer the hiatuses of varied magnitude in the sedimentary sequences during the extended time interval of Permian and Triassic.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.