• A D Shukla

      Articles written in Journal of Earth System Science

    • High iridium concentration of alkaline rocks of Deccan and implications to K/T boundary

      P N Shukla N Bhandari Anirban Das A D Shukla J S Ray

      More Details Abstract Fulltext PDF

      We report here an unusually high concentration of iridium in some alkali basalts and alkaline rocks of Deccan region having an age of about 65Ma, similar to the age of the Cretaceous-Tertiary boundary. The alkali basalts of Anjar, in the western periphery of Deccan province, have iridium concentration as high as 178pg/g whereas the alkaline rocks and basalts associated with the Amba Dongar carbonatite complex have concentrations ranging between 8 and 80 pg/g. Some of these values are more than an order of magnitude higher than the concentration in the tholeiitic basalts of Deccan, indicating the significance of alkaline magmatism in the iridium inventory at the Cretaceous-Tertiary boundary. Despite higher concentration, their contribution to the global inventory of iridium in the Cretaceous-Tertiary boundary clays remains small. The concentration of iridium in fluorites from Amba Dongar was found to be <30 pg/g indicating that iridium is not incorporated during their formation in hydrothermal activity.

    • Geochemistry and magnetostratigraphy of deccan flows at Anjar, Kutch

      A D Shukla N Bhandari Sheela Kusumgar P N Shukla Z G Ghevariya K Gopalan V Balaram

      More Details Abstract Fulltext PDF

      Chemical analysis of nine Deccan flow basalts at Anjar, Kutch, western India, indicates that all, except the uppermost flow F-9, are alkaline. In their major and trace element composition, the alkali basalts resemble Ocean island basalts (OIB). Similarities of many diagnostic trace element ratios (e.g. Sm/Nd, Ba/Nb,Y/Nb and Zr/Nb) are similar to those found in the Réunion Island basalts. The uppermost basalt is tholeiitic and chemically resembles the least contaminated Deccan basalt (Ambenali type). The Anjar basalts have iridium concentration ranging between 2 and 178 pg/g. Some of these values are higher by about an order of magnitude compared to the Ir concentration in other basalts of the Deccan. A synthesis of chemical, palaeomagnetic and geochronologic data enables us to construct a chemical and magnetic stratigraphy for these flows.

      The three flows below the iridium enriched intertrappean bed (IT III) show normal magnetic polarity whereas all except one of the upper basalts show reversed magnetic polarity. The sequence seems to have started in polarity zones 31N and probably continued up to 28R or 27R. The results presented here support the view that Deccan volcanism in Kutch occurred on a time span of a few million years.

    • Comments on ‘No K/T boundary at Anjar, Gujarat, India: Evidence from magnetic susceptibility and carbon isotopes’

      A D Shukla P N Shukla

      More Details Fulltext PDF
    • Mineralogy and trace element chemistry of the siliceous earth of barmer basin, Rajasthan: Evidence for a volcanic origin

      M S Sisodia U K Singh G Lashkari P N Shukla A D Shukla N Bhandari

      More Details Abstract Fulltext PDF

      We report the presence of a 3–5 cm thick loose fragmental layer in the Siliceous Earth at Matti ka Gol in the Barmer basin of Rajasthan. Petrographic, chemical and mineralogical study reveals the presence of abundant volcanic debris such as glass shards, agglutinates, hollow spheroids, kinked biotites, feldspars showing oscillatory zoning, olivines, ilmenite and native iron. The presence of similar particles in the whole section suggests that the Siliceous Earth is a volcanic ash. Stratigraphic correlation, palynological and microvertebrate data suggest that the Siliceous Earth may have deposited over a short span of time during the Upper Cretaceous to Lower Palaeocene. In view of the possibility that this section may contain K/T impact debris, we looked for grains having impact signatures. Some patches of the Siliceous Earth of Bariyara show the presence of Ni-rich (> 0.5%) vesicular glasses, sanidine spherules, magnesioferrite crystals, soot, etc., but because of their low abundance, it is not possible to establish if they are volcanic, micrometeorite ablation products or a part of the K/T impact ejecta.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

    • Special Issue - "Call for papers"

      Posted on July 18, 2023
      AI/ML in Earth System Sciences

      Click here for more information

      Extreme weather events with special emphasis on lightning prediction, observation, and monitoring over India

      Click here for more information

© 2023-2024 Indian Academy of Sciences, Bengaluru.