• A Absar

      Articles written in Journal of Earth System Science

    • Alkaline rocks of Samchampi-Samteran, District Karbi-Anglong, Assam, India

      S Nag S K Sengupta R K Gaur A Absar

      More Details Abstract Fulltext PDF

      The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins.

      The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia.

      The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.

    • Are Majhgawan-Hinota pipe rocks truly group-I Kimberlite?

      Ravi Shanker S Nag A Ganguly A Absar B P Rawat G S Singh

      More Details Abstract Fulltext PDF

      The diamond bearing pipe rocks in Majhgawan-Hinota (more than four pipes) occur as intrusives in sandstones of Kaimur Group. These Proterozoic (974 ±30-1170 ±20 Ma) intrusive rocks, occupying the southeastern margin of Aravalli craton, were called as ‘micaceous kimberlite’ in tune with the reported kimberlite occurrences from other parts of the world. Judging from the definition of kimberlite, as approved by the IUGS Subcommission on Systematics of Igneous Rocks, it is not justified to call these rocks as ‘micaceous kimberlite’. Rather the mineralogical assemblages such as absence of typomorphic mineral monticellite (primary), abundance of phlogopite cognate, frequent presence of barite and primary carbonate mostly as calcite coupled with ultrapotassic and volatile-rich (dominantly H2O) nature and high concentration of incompatible elements (such as Ba, Zr, Th, U), low Th/U ratios, low REE and no Eu-anomaly clearly indicate a close similarity with that of South African orangeites. Thus orangeites of Proterozoic age occur outside the Kaapvaal craton of South Africa which are much younger (200 Ma to 110 Ma) in age.

  • Journal of Earth System Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.