Vijayamohanan K Pillai
Articles written in Journal of Chemical Sciences
Volume 121 Issue 5 September 2009 pp 719-725
Meera Parthasarathy Vijayamohanan K Pillai
Scanning Electrochemical Microscopy (SECM) is a unique technique for studying fast heterogeneous kinetics and to map reactivity gradients along the surface of an electrocatalyst, especially when it involves multiple surface sites of varying reactivity. It combines the dual advantages offered by ultramicroelectrode (UME) voltammetry in terms of reduced ohmic drop and insignificant double layer charging contribution with the advantages of imaging by rastering the UME across an electro-active surface. In this work, we demonstrate these distinctive features of SECM in evaluating reactivity gradients on catalyst (Pt/C) coated Nafion® films towards hydrogen oxidation activity, a reaction of immense technological relevance. Imaging has been performed in the feedback mode by allowing H2 evolution at the tip (25 𝜇m Pt UME), which is reoxidized at the substrate electrode containing Pt/C-Nafion film. Interesting distribution in H2 oxidation activity has been observed as a function of potential applied to the Pt/CNafion film. In addition, a plot of normalized tip current versus the substrate electrode potential indicates the effect of potential-induced reactivity change in the catalyst-coated membranes. The results of the present investigation are believed to be useful to H2/O2 PEM fuel cells with respect to evaluating reactivity gradients of catalyst-coated polymer electrolyte membranes, which is important to rectify problems related to catalyst utilization.
Volume 125 Issue 1 January 2013 pp 63-69
N Venkatathri Vijayamohanan K Pillai A Rajini M Nooka Raju I A K Reddy
A novel vanadium containing solid core mesoporous silica shell catalyst was synthesized with different Si/V ratios by sol-gel method under neutral conditions. The synthesized materials were characterized by various techniques and gas phase diphenyl methane oxidation reaction. The mesoporosity combined with microporosity are formed by incorporation of octadecyltrichloro silane and triethylamine in the catalyst and it was found out from E-DAX and BET—surface area analysis. The material was found to be nanocrystalline. Vanadium is present as V4+ species in as-synthesized samples and convert to V$^{5+}$ on calcination. Most of the vanadium is present in tetrahedral or square pyramidal environment. Incorporation of vanadium in silica framework was confirmed by 29Si MAS NMR analysis. Among the various vanadium containing solid core mesoporous silica shell catalysts, the Si/V =100 ratio exhibited maximum efficiency towards diphenyl methane to benzophenone gas phase reaction. The optimum condition required for maximum conversion and selectivity was found out from the catalytic studies.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.