• T S Venkatakrishnan

      Articles written in Journal of Chemical Sciences

    • Organometallic chemistry of chiral diphosphazane ligands: Synthesis and structural characterisation

      Kannan Raghuraman Swadhin K Mandal T S Venkatakrishnan Setharampattu S Krishnamurthy Munirathinam Nethaji

      More Details Abstract Fulltext PDF

      The diphosphazane ligands of the type, (C20H12O2)PN(R)P(E)Y2 (R = CHMe2 or (S)-*CHMePh; E = lone pair or S; Y2 = O2C20H12 or Y = OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) bearing axially chiral 1,1'-binaphthyl-2,2′-dioxy moiety have been synthesised. The structure and absolute configuration of a diastereomeric palladium complex, [PdCl2{ηsu2}-((O2C20H12)PN((S)-*CHMePh)PPh2] has been determined by X-ray crystallography. The reactions of [CpRu(PPh3)2Cl] with various symmetrical and unsymmetrical diphosphazanes of the type, X2PN(R)PYY′ (R = CHMe2 or (S)-*CHMePh; X = C6H5 or X2 = O2C20H12; Y=Y′= C6H5 or Y = C6H5, Y′ = OC6H4Me-4 or OC6H3Me2-3,5 or N2C3HMe2-3,5) yield several diastereomeric neutral or cationic half-sandwich ruthenium complexes which contain a stereogenic metal center. In one case, the absolute configuration of a trichiral ruthenium complex, viz. [Cp*Ruη2-Ph2PN((S)-*CHMePh)*PPh (N2C3HMe2-3,5)Cl] is established by X-ray diffraction. The reactions of Ru3(CO)12 with the diphosphazanes (C20H12O2)PN(R)PY2 (R = CHMe2orMe; Y2=O2C20H12or Y= OC6H5 or OC6H4Me-4 or OC6H4OMe-4 or OC6H4But-4 or C6H5) yield the triruthenium clusters [Ru3(CO)10{η-(O2C20H12)PN(R)PY2}], in which the diphosphazane ligand bridges two metal centres. Palladium allyl chemistry of some of these chiral ligands has been investigated. The structures of isomeric η3-allyl palladium complexes, [Pd(η3-l,3-R′2-C3H3){η2-(rac)-(02C20H12)PN(CHMe2)PY2}](PF6) (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopic and X-ray crystallographic studies.

    • Rhodium(I) complexes of α-keto-stabilised 1,2-bis(diphenylphosphino)alkane mono ylides

      D Saravanabharathi T S Venkatakrishnan M Nethaji S S Krishnamurthy

      More Details Abstract Fulltext PDF

      Rhodium(I) complexes of the hybrid ylide-phosphine ligands, Ph2P(CH2)nPPh2(CHC(O)C6H5) (n = 1: dppm-yl, or 2: dppe-yl) have been synthesised from [Rh(μ-C1)(COD)]2 (COD = 1,5-cyclooctadiene) and characterized by NMR spectroscopic and X-ray structural methods. The dppe-yl behaves as an ambidentate ligand; it functions as a monodentate P-donor ligand with a dangling ylidic carbon in the neutral chloro complex, [(COD)Rh(Cl)(dppe-yl)] (1), whereas replacement of the chloride by a non-coordinating counter anion results in the formation of the complexes, [(COD)Rh(L-L’)]+ (L-L’ = dppe-yl (2) or dppm-yl (3)) respectively in which the ligands are bonded to the metal via the phosphorus and the ylidic carbon atoms. The 1,5-cyclooctadiene (COD), present in the Rh(I) precursor, remains intact in the products. The structures of1,2 and3 have been confirmed by X-ray crystallography.

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.