Satyendra Gupta
Articles written in Journal of Chemical Sciences
Volume 126 Issue 6 November 2014 pp 1789-1801 Regular Articles
Nand Kishor Gour Satyendra Gupta Bhupesh Kumar Mishra Hari Ji Singh
Theoretical investigation has been carried out on the kinetics and reaction mechanism of the gas-phase reaction of 3-hydroxy-2-butanone (3H2B) with OH radical using dual-level procedure employing the optimization at DFT(BHandHLYP)/6-311++G(d,p) followed by a single-point energy calculation at the CCSD(T)/6-311++G(d,p) level of theory. The pre- and post reactive complexes are also validated at entrance and exit channels, respectively. Thus reaction may be proceed via indirect mechanism. The intrinsic reaction coordinate (IRC) calculation has also been performed to confirm the smooth transition from a reactant to product through the respective transition states. The rate coefficients were calculated for the first time over a wide range of temperature (250-450 K) and described by the following expression: kOH = 7.56 × 10−11exp[−(549.3 ± 11.2)/T] cm3 molecule-1s-1. At 298 K, our calculated rate coefficient 1.20 × 10−11 cm3 molecule-1 s-1 is in good agreementwith the experimental results. Our calculation indicates that H-abstraction from 𝛼-C-H site of 3H2B is the dominant reaction channel. Using group-balanced isodesmic reactions, the standard enthalpies of formation for 3H2B and radicals generated by hydrogen abstraction are reported for the first time. The branching ratios of the different reaction channels are also determined. Also, the atmospheric lifetime of 3H2B is also calculated to be 1.04 days.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.