Articles written in Journal of Chemical Sciences

    • A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au)


      More Details Abstract Fulltext PDF

      A density functional theory based study is performed to investigate the noble gas (Ng = Ar-Rn) binding ability of nitrates, sulfates and carbonates of noble metal (M). Their ability to bind Ng atoms is assessed through bond dissociation energy and thermochemical parameters like dissociation enthalpy and dissociation free energy change corresponding to the dissociation of Ng bound compound producing Ngand the respective salt. The zero-point energy corrected dissociation energy values per Ng atom for the dissociation process producing Ng atom(s) and the corresponding salts range within 6.0–13.1 kcal/mol in NgCuNO₃, 3.1–9.8 kcal/mol in NgAgNO₃, 6.0–13.2 kcal/mol in NgCuSO₄, 3.2–10.1 kcal/mol in NgAgSO₄, 5.1–11.7 kcal/mol in Ng₂Cu₂SO₄, 2.5–8.6 kcal/mol in Ng₂Ag₂SO₂, 8.1–19.9 kcal/mol in Ng₂Au2SO₂, 5.7–12.4 kcal/mol in NgCuCO₃, 2.3–8.0 kcal/mol in Ng₂Ag₂CO₃ and 7.3–18.2 kcal/mol in Ng₂Au₂CO₃, with a gradual increase in moving from Ar to Rn. For a given type of system, the stability of Ng bound analogues follows the order as Au > Cu > Ag. All dissociation processes are endothermic in nature whereas they become endergonic as well in most of the cases of Kr-Rn bound analogues at 298 K. Natural population analysis along with the computation of Wiberg bond indices, and electron density analyses provide insights into the nature of the Ng-M bonds. The Ng-M bonds can be represented as partial covalent bonds as supported by the different electron density descriptors.

    • Modeling of 1-D Nanowires and analyzing their Hydrogen and Noble Gas Binding Ability


      More Details Abstract Fulltext PDF

      The theoretical calculation at the M05-2X/6-311+G(d,p) level reveals that the B–B bond length in [N ₄ ₋B ₂ ₋N ₄] ²⁻ system (1.506 Å) is slightly smaller than that of typical B=B bond in B ₂H ₂ (1.518 Å). These systems interact with each M ⁺ (M = Li, Na, K) ion very strongly with a binding energy of 213.5 (Li), 195.2 (Na) and 180.3 (K) kcal/mol. Additionally, the relief of the Coulomb repulsion due to the presence of counterion, M ⁺, the B–B bond contracts to 1.484–1.488Å in [N ₄ ₋B ₂ ₋N ₄]M ₂. We have further extended our study to [N ₄ ₋B ₂ ₋N ₄ ₋B ₂ ₋N ₄] ⁴⁻ and [N ₄ ₋B ₂ ₋N ₄-B ₂ ₋N ₄ ₋B ₂ ₋N ₄] ⁶⁻ systems. The B–B bond length is found to be 1.496Å in the former case, whereas the same is found to be 1.493Å and 1.508 Å, respectively, for the two B–B bonds present in the latter one. The M ⁺ counter-ions stabilize such negatively charged systems and thus, create a possibility to design a long 1-D nanowire. Their utilities as probable hydrogen and noble gas (Ng) binding templates are explored taking [N ₄ ₋B ₂2 ₋N ₄ ₋B ₂ ₋N ₄]Li ₄ system as a reference. It is found that each Li center binds with three H ₂ molecules with an average binding energy of 2.1 kcal/mol, whereas each Ng (Ar–Rn) atom interacts with Li center having a binding energy of 1.8–2.1 kcal/mol. The H ₂ molecules interact with Li centers mainly through equal contribution from orbital and electrostatic interaction, whereas the orbital interaction is found to be major term (ca. 51–58%) in Ng-Li interaction followed by dispersion (ca. 24–27%) and electrostatic interaction (ca. 17–24%).

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.