• S Adhikari

      Articles written in Journal of Chemical Sciences

    • Oxidation reactions of 1,3-diphenylpropane-1,3-dione

      Medha Rele B S Patro S Adhikari G P Kalena S Chattopadhyay T Mukherjee

      More Details Abstract Fulltext PDF

      The free radical scavenging properties and possible antioxidant activity of 1,3-diphenylpropane-1,3-dione (1) are reported. Pulse radiolysis technique was employed to study the one-electron oxidation of 1 with various radicals viz. CCl3O2, N3 andOH in homogeneous aqueous solution. All these radicals reacted with 1 under ambient conditions at almost diffusion controlled rates producing transient species with an absorption maximum around 420 nm that decayed at first order rates. The transient absorption peak was shifted in the case of CCl3OO radical reaction with 1 due to change in the polarity of the medium. Formation of a stable product with a broad absorption band starting from 400 nm and cut off at 230 nm was observed in the oxidation of 1 withOH andN3 radicals. In a biological system also, 1 showed significant inhibitory activity against Fe2+-mediatedlipidperoxidation. Based on these observations, a suitable mechanism for the oxidation of 1 has been proposed.

    • Selective control of HOD photodissociation using CW lasers

      Manabendra Sarma S Adhikari Manoj K Mishra

      More Details Abstract Fulltext PDF

      Selective control of HOD photodissociation (H-O + D $\leftarrow$ HOD → H + O-D) has been theoretically investigated using CW lasers with appropriate carrier frequency and |0, 0$\rangle$, |0, 1$\rangle$ and |0, 2$\rangle$ with zero quantum of excitation in the O-H bond and zero, one and two quanta of excitation in the O-D bond as the initial states. Results indicate that the O-H bond in HOD can be selectively dissociated with a maximum flux of 87% in the H + O-D channel from the ground vibrational state |0, 0$\rangle$. For the O-D bond dissociation, it requires two quanta of excitation (|0, 2$\rangle$) in the O-D mode to obtain 83% flux in the H-O + D channel. Use of a two colour laser set-up in conjunction with the field optimized initial state (FOIST) scheme to obtain an optimal linear combination of |0, 0$\rangle$ and |0, 1$\rangle$ vibrational states as the initial state provides an additional 7% improvement to flux in the H-O + D channel as compared to that from the pure |0, 1$\rangle$ state.

  • Journal of Chemical Sciences | News

© 2022-2023 Indian Academy of Sciences, Bengaluru.