Rajesh K Vatsa
Articles written in Journal of Chemical Sciences
Volume 113 Issue 4 August 2001 pp 333-342
TEA CO2 laser-induced reaction of CH3NO2 with CF2HCl: A mechanistic study
Rajesh K Vatsa Sisir K Sarkar Jai P Mittal
Dissociation of nitromethane has been observed when a mixture of CF2HCl and CH3NO2 is irradiated using pulsed TEA CO2 laser at 9R (24) line (1081 cm-1), which is strongly absorbed by CF2HCl but not by CH3NO2. Under low laser fluence conditions, only nitromethane dissociates, whereas at high fluence CF2HCl also undergoes dissociation, showing that dissociation occurs via the vibrational energy transfer processes from the TEA CO2 laser-excited CF2HCl to CH3NO2. Time-resolved infrared fluorescence from vibrationally excited CF2HCl and CH3NO2 molecules as well as UV absorption of CF2 radicals are carried out to elucidate the dynamics of excitation/dissociation and the chemical reactions of the dissociation products.
Volume 114 Issue 6 December 2002 pp 675-686
Mohammed Abu-Bajeh Melanie Cameron Kyung-Hoon Jung Christoph Kappel Almuth Läuter Kyoung-Seok Lee Harip Upadhyaya Rajesh K Vatsa Hans-Robert Volpp
The dynamics of formation of oxygen atoms after UV photoexcitation of SO2 in the gas-phase was studied by pulsed laser photolysis-laser-inducedfluorescence ‘pump-and-probe’ technique in a flow reactor. SO2 at room-temperature was excited at the KrCl excimer laser wavelength (222.4 nm) and O(3Pj) photofragments were detected under collision-free conditions by vacuum ultraviolet laser-induced fluorescence. The use of narrow-band probe laser radiation, generated viaresonant third-order sum-difference frequency conversion of dye laser radiation in Krypton, allowed the measurement of the nascent O(3Pj=2,1,0) fine-structure state distribution:
Volume 119 Issue 4 July 2007 pp 277-282
Almuth Laeuter Hans-Robert Volpp Jai P Mittal Rajesh K Vatsa
The collision-free, room temperature gas-phase photodissociation dynamics of CH3CFCl2 (HCFC-141b) was studied using Lyman-𝛼 laser radiation (121.6 nm) by the laser photolysis/laserinduced fluorescence `pump/probe’ technique. Lyman-𝛼 radiation was used both to photodissociate the parent molecule and to detect the nascent H atom products via ($2p^2$P → $1s^2$S) laser-induced fluorescence. Absolute H atom quantum yield, $\phi_H = (0.39 \pm 0.09)$ was determined by calibration method in which CH4 photolysis at 121.6 nm was used as a reference source of well-defined H atom concentrations. The line shapes of the measured H atom Doppler profiles indicate a Gaussian velocity distribution suggesting the presence of indirect H atom formation pathways in the Lyman-𝛼 photodissociation of CH3CFCl2. The average kinetic energy of H atoms calculated from Doppler profiles was found to be $E_{\text{T(lab)}} = (50 \pm 3)$ kJ/mol. The nearly statistical translational energy together with the observed Maxwell-Boltzmann velocity distribution indicates that for CH3CFCl2 the H atom forming dissociation process comes closer to the statistical limit.
Current Issue
Volume 131 | Issue 10
October 2019
Click here for Editorial Note on CAP Mode
© 2017-2019 Indian Academy of Sciences, Bengaluru.