PRASAD V BHARATAM
Articles written in Journal of Chemical Sciences
Volume 112 Issue 6 December 2000 pp 623-629
Theoretical studies on the conformations of selenamides
Rajnish Moudgil Damanjit Kaur Rachita Vashisht Prasad V Bharatam
Volume 128 Issue 10 October 2016 pp 1607-1614 Regular Article
Carbene→N⁺ Coordination Bonds in Drugs: A Quantum Chemical Study
DEEPIKA KATHURIA MINHAJUL ARFEEN APOORVA A BANKAR PRASAD V BHARATAM
Coordination chemistry of bonds between main group elements and electron donating ligands as in L→E (where E is electron acceptor centre like C⁰, Si⁰, N¹, P¹, As¹, B¹ and L is an electron donating N-heterocyclic carbene) have been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae:(L→N←L)⊕ and L→N-R. Divalent N¹ compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them are found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine were performed at B3LYP/6-311++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L)⊕ in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.
Volume 129 Issue 5 May 2017 pp 515-531 Regular Article
ANAMIKA SINGH GAUR ANSHU BHARDWAJ ARUN SHARMA LIJO JOHN M RAM VIVEK NEHA TRIPATHI PRASAD V BHARATAM RAKESH KUMAR SRIDHARA JANARDHAN ABHAYSINH MORI ANIRBAN BANERJI ANDREW M LYNN ANMOL J HEMROM ANURAG PASSI APARNA SINGH ASHEESH KUMAR CHARUVAKA MUVVA CHINMAI MADHURI CHINMAYEE CHOUDHURY D ARUN KUMAR DEEPAK PANDIT DEEPAK R BHARTI DEVESH KUMAR ER AZHAGIYA SINGAM GAJENDRA PS RAGHAVA HARI SAILAJA HARISH JANGRA KAAMINI RAITHATHA KARUNAKAR TANNEERU KUMARDEEP CHAUDHARY M KARTHIKEYAN M PRASANTHI NANDAN KUMAR N YEDUKONDALU NEERAJ K RAJPUT P SRI SARANYA PANKAJ NARANG PRASUN DUTTA R VENKATA KRISHNAN REETU SHARMA R SRINITHI RUCHI MISHRA S HEMASRI SANDEEP SINGH SUBRAMANIAN VENKATESAN SURESH KUMAR UCA JALEEL VIJAY KHEDKAR YOGESH JOSHI G NARAHARI SASTRY
Molecular Property Diagnostic Suite (MPDSTB) is a web tool (http://mpds.osdd.net) designed to assist the in silico drug discovery attempts towards Mycobacterium tuberculosis (Mtb). (MPDSTB) tool has nine modules which are classified into data library (1–3), data processing (4–5) and data analysis (6–9). Module 1 is a repository of literature and related information available on the Mtb. Module 2 deals with the protein targetanalysis of the chosen disease area. Module 3 is the compound library consisting of 110.31 million unique molecules generated from public domain databases and custom designed search tools. Module 4 contains toolsfor chemical file format conversions and 2D to 3D coordinate conversions. Module 5 helps in calculating the molecular descriptors. Module 6 specifically handles QSAR model development tools using descriptors generated in the Module 5. Module 7 integrates the AutoDock Vina algorithm for docking, while module 8 provides screening filters. Module 9 provides the necessary visualization tools for both small and large molecules. The workflow-based open source web portal,(MPDSTB) 1.0.1 can be a potential enabler for scientists engaged in drug discovery in general and in anti-TB research in particular.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.