OZGUR YAVUZ
Articles written in Journal of Chemical Sciences
Volume 131 Issue 5 May 2019 Article ID 0041
SECIL KIRLANGIC ATASEN YUSUF ALCAY OZGUR YAVUZ BARIS YUCEL ISMAIL YILMAZ
We explored the mechanistic aspects of ion pair formation between electrochemically reduced radicals (Fc–cnq–1a•−/Fc–cnq–1b•−) and dianions (Fc–cnq–1a2−/Fc–cnq–1b2−) of ferrocenyl naphthoquinones (Fc–cnq–1a and Fc–cnq–1b) and several metal ions by cyclic voltammetry (CV), squarewave voltammetry (SWV) and spectroelectrochemistry, for the first time. The experiments demonstrated that Fc–cnq–1a2−/Fc–cnq–1b2− were moderately affected with Na+, K+ and Cs+ by slightly shifting to the anodic side, but were strongly influenced with Li+ ion. Fc–cnq–1a•−/Fc–cnq–1b•− were not affected by alkali metal ions, indicating no ion pair formation between the radicals and these ions. Fc–cnq–1a2-/Fc–cnq–1b2- was not evolved in the presence of Be2+, Mg2+ and Ca2+, but Fc–cnq–1a•−/Fc–cnq–1b•− appeared with theircathodic waves, and participated with intermediates, [(Fc–cnq–1b)2•−–Be2+ and [(Fc–cnq–1a).-–Cl]. The most pronounced effect on the ion-pair formation of the Fc–cnq–1a•−/Fc–cnq–1b•− was observed in Be2+,indicating that Fc–cnq–1a or Fc–cnq–1b can selectively sense ultra-trace amount of Be2+ (LOD=3.6 ppb)among the other metal ions with SWV titration, for the first time, based on the strong ion pair formation reaction between the radicals and Be2+.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2023-2024 Indian Academy of Sciences, Bengaluru.