• Kishor Naktode

      Articles written in Journal of Chemical Sciences

    • Syntheses and solid state structures of zinc (II) complexes with Bi-dentate 𝑁-(Aryl)imino-acenapthenone (Ar-BIAO) ligands

      Srinivas Anga Supriya Rej Kishor Naktode Tigmansu Pal Tarun K Panda

      More Details Abstract Fulltext PDF

      We have synthesized five zinc complexes of molecular formulae [ZnCl2(2,6-dimethylphenyl-BIAO)]2 (1a), [ZnBr2(2,6-dimethylphenyl-BIAO)]2 (1b), [ZnI2(2,6-dimethylphenyl-BIAO)]2(1c), [ZnBr2(mes-BIAO)]2(2b) and [ZnBr2(dipp-BIAO)] (3b) with rigid unsymmetrical iminoacenaphthenone ligands, (2,6-dimethylphenyl-BIAO) (1), (mesityl-BIAO) (2) and (2,6-diisopropylphenyl-BIAO) (3). The zinc complex 1a was prepared by the reaction of ZnCl2 and neutral (mesityl-BIAO) (1). However, complexes 1b, 2b and 3b were obtained by the treatment of ZnBr2 and neutral ligands 1-3 respectively in 1:1 molar ratio in dichloromethane at ambient temperature. In a similar reaction of ZnI2 with (2,6-dimethylphenyl-BIAO) (1) in dichloromethane the corresponding iodo-complex 1c was obtained in good yield. All the zinc (II) complexes are characterized by FT-IR, 1H and 13C{1H} NMR spectroscopic techniques. The solid state structures of the complexes 1a, 1b, 1c, 2b and 3b are confirmed by single crystal X-ray diffraction analysis. The molecular structures of complexes 1a, 1b, 1c and 2b reveal the dimeric nature of the complexes and subsequently the centre atom zinc is penta-coordinated to adopt distorted trigonal bipyramidal geometry around it. In contrast, the complex 3b is in monomeric in nature due to bulkier size of the ligand and zinc ion is tetra coordinated to adopt distorted tetrahedral geometry.

    • Syntheses and structures of dimeric sodium and potassium complexes of 2,6-diisopropyl-anilidophosphine borane ligand

      Kishor Naktode Jayeeta Bhattacharjee Anirban Chakrabarti Tarun K Panda

      More Details Abstract Fulltext PDF

      We report here the syntheses and structural studies of dimeric sodium and potassium complexes of composition [Na(THF)2{Ph2P(BH3)N(2,6-iPr2C6H6)}]2 (2) and [K(THF)2{Ph2P(BH3)N(2,6-iPr2C6H6)}]2(3). The sodium complex 2 was readily prepared by the reaction of sodium bis(trimethylsilyl)amide with 2,6-diisopropylanilidophosphine-borane ligand [2,6-iPr2C6H3NHP(BH3)Ph2] (1-H) at ambient temperature. The potassium complex 3 was prepared by two synthetic routes: in the first method, the ligand 1-H was made to react with potassium hydride at room temperature to afford the corresponding potassium complex. The potassium bis(trimethylsilyl)amides were made to react with protic ligand 1-H in the second method to eliminate the volatile bis(trimethyl)silyl amine. Solid-state structures of both the new complexes were established by single crystal X-ray diffraction analysis. In the molecular structures of complexes 2, the sodium metal is coordinated by the anilido nitrogen (𝜂1) and borane group (𝜂1) attached to the phosphorus atom of ligand 1. In contrast, for compound 2, ligand 1 displays 𝜂6𝜋-arene interaction from 2,6-diisopopylphenyl ring with potassium atom along with 𝜂3 interaction of BH3 group due to larger ionic radius of potassium ion.

    • Nickel(II) complexes having Imidazol-2-ylidene-N′-phenylurea ligand in the coordination sphere – syntheses and solid state structures

      Kishor Naktode Abhinanda Kundu Sudeshna Saha Hari Pada Nayek Tarun K Panda

      More Details Abstract Fulltext PDF

      We report the syntheses and structural studies of two nickel(II) complexes of imidazol-2-ylidene- N'-phenylureate ligand of composition [{Im𝑡Bu NCON(H)Ph}2 Ni(acac)2] (1) and [(C6H5NH2)2 Ni(acac)2] [ImMes NCON(H)Ph] (2). The nickel complex 1 was readily prepared by the reaction of nickel(II) acetylacetonate [Ni(acac) 2 ] with imidazol-2-ylidene-N'-phenylureate ligand [Im𝑡Bu NCON(H)Ph] (L1) in THF under reflux condition for 72 h. The nickel complex 2 was obtained by the reaction of [Ni(acac)2], mesityl derivative of imidazol-2-ylidene-N′-phenylureate ligand [ImMes NCON(H)Ph] (L2) in the presence of aniline as base under reflux condition in THF. Both the paramagnetic complexes have been characterized by FT-IR spectroscopy and elemental analyses. Solid-state structures of both the new complexes were established by single crystal X-ray diffraction analysis. In the molecular structures of complexes 1 and 2, each nickel(II) ion is six fold coordinated and form a distorted octahedral geometry. The optical properties of both complexes have been explored. The Hirshfeld surfaces are used to view and analyze the intermolecular contacts in crystalline state for complex 2.

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.