• Gouriprasanna Roy

      Articles written in Journal of Chemical Sciences

    • Selenium-containing enzymes in mammals: Chemical perspectives

      Gouriprasanna Roy Bani Kanta Sarma Prasad P Phadnis G Mugesh

      More Details Abstract Fulltext PDF

      The chemical and biochemical route to the synthesis of the 21st amino acid in living systems, selenocysteine, is described. The incorporation of this rare amino acid residue into proteins is described with emphasis on the role of monoselenophosphate as selenium source. The role of selenocysteine moiety in natural mammalian enzymes such as glutathione peroxidase (GPx), iodothyronine deiodinase (ID) and thioredoxin reductase (TrxR) is highlighted and the effect of other amino acid residues located in close proximity to selenocysteine is described. It is evident from various studies that two amino acid residues, tryptophan and glutamine, appear in identical positions in all known members of the GPx family. According to the three-dimensional structure established for bovine GPx, these residues could constitute a catalytic triad in which the selenol group of the selenocysteine is both stabilized and activated by hydrogen bonding with the imino group of the tryptophan (Trp) residue and with the amido group of the glutamine (Gln) residue. The ID enzymes, on the other hand, do not possess any Trp or Gln residues in close proximity to selenium, but contain several histidine residues, which may play important roles in the catalysis. The TrxR enzymes also possess some basic histidines, but the most important amino acid residues are the cysteines which constitute the internal cofactor systems along with the catalytically active selenocysteine. The catalytic activity and substrate specificity of all three selenoenzymes are described. The reactivity of selenocysteine residues in selenoenzymes towards metal-based drugs such as goldthioglucose is also described.

    • Thyroid hormone synthesis and anti-thyroid drugs: A bioinorganic chemistry approach

      Gouriprasanna Roy G Mugesh

      More Details Abstract Fulltext PDF

      Hydrogen peroxide, generated by thyroid oxidase enzymes, is a crucial substrate for the thyroid peroxidase (TPO)-catalysed biosynthesis of thyroid hormones, thyroxine (T4) and triiodothyronine (T3) in the thyroid gland. It is believed that the H2O2 generation is a limiting step in thyroid hormone synthesis. Therefore, the control of hydrogen peroxide concentration is one of the possible mechanisms for the inhibition of thyroid hormone biosynthesis. The inhibition of thyroid hormone synthesis is required for the treatment of hyperthyroidism and this can be achieved by one or more anti-thyroid drugs. The most widely used anti-thyroid drug methimazole (MMI) inhibits the production of thyroid hormones by irreversibly inactivating the enzyme TPO. Our studies show that the replacement of sulphur in MMI by selenium leads to a selone, which exists predominantly in its zwitterionic form. In contrast to the sulphur drug, the selenium analogue (MSeI) reversibly inhibits the peroxidase-catalysed oxidation and iodination reactions. Theoretical studies on MSeI reveal that the selenium atom in this compound carries a large negative charge. The carbon-selenium bond length in MSeI is found to be close to single-bond length. As the selenium atom exhibits a large nucleophilic character, the selenium analogue of MMI may scavenge the hydrogen peroxide present in the thyroid cells, which may lead to a reversible inhibition of thyroid hormone biosynthesis.

    • Effect of thione-thiol tautomerism on the inhibition of lactoperoxidase by anti-thyroid drugs and their analogues

      P N JAyaram Gouriprasanna Roy Govindasamy Mugesh

      More Details Abstract Fulltext PDF

      The keto-enol type tautomerism in anti-thyroid drugs and their selenium analogues are described. The commonly used anti-thyroid drug methimazole exists predominantly in its thione form, whereas its selenium analogue exists in a zwitterionic form. To understand the effect of thione/thiol and selone/selenol tautomerism on the inhibition of peroxidase-catalysed reactions, we have synthesized some thiones and selones in which the formation of thiol/selenol forms are blocked by different substituents. These compounds were synthesized by a carbene route utilizing an imidazolium salt. The crystal structures of these compounds reveal that the C=Se bonds in the selones are more polarized than the C=S bonds in the corresponding thiones. The structures of selones were studied in solution by NMR spectroscopy and the 77Se NMR chemical shifts for the selones show large upfield shifts in the signals, confirming their zwitterionic structures in solution. The inhibition of lactoperoxidase by the synthetic thiones indicates that the presence of a free N-H moiety is essential for an efficient inhibition. In contrast, such moiety is not required for an inhibition by the selenium compounds.

  • Journal of Chemical Sciences | News

© 2023-2024 Indian Academy of Sciences, Bengaluru.