GOPALAN RAJARAMAN
Articles written in Journal of Chemical Sciences
Volume 126 Issue 5 September 2014 pp 1569-1579 Special issue on Chemical Crystallography
Tulika Gupta Gopalan Rajaraman
Ab
Volume 127 Issue 2 February 2015 pp 343-352
Bhawana Pandey Azaj Ansari Nidhi Vyas Gopalan Rajaraman
Iron and manganese ions with terminal oxo and hydroxo ligands are discovered as key intermediates in several synthetic and biochemical catalytic cycles. Since many of these species possess vigorous catalytic abilities, they are extremely transient in nature and experiments which probe the structure and bonding on such elusive species are still rare. We present here comprehensive computational studies on eight iron and manganese oxo and hydroxo (FeIII/IV/V-O, FeIII-OH and MnIII/IV/V-O, MnIII-OH) species using dispersion corrected (B3LYP-D2) density functional method. By computing all the possible spin states for these eight species, we set out to determine the ground state
Volume 128 Issue 10 October 2016 pp 1615-1630 Regular Article
TULIKA GUPTA GUNASEKARAN VELMURUGAN THAYALAN RAJESHKUMAR GOPALAN RAJARAMAN
Ab initio CASSCF+RASSI-SO+SINGLE_ANISO and DFT based NBO and QTAIM investigations were carried out on a series of trigonal prismatic M(BcMe)₃ (M = Tb(1), Dy(2), Ho(3), Er(4), [BcMe]⁻ = dihydrobis (methylimidazolyl) borate) and M(BpMe)₃ (M = Tb(1a), Dy(2a), Ho(3a), Er(4a) [BpMe]⁻ = dihydrobis (methypyrazolyl) borate) complexes to ascertain the anisotropic variations of these two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Among all the complexes studied, only 1 and 2 show large Ucal (computed energy barrier for magnetization reorientation) values of 256.4 and 268.5 cm⁻¹, respectively and this is in accordance with experiment. Experimentally only frequency dependent χ” tails are observed for complex 1a and our calculation predicts a large Ucalof 229.4 cm⁻¹ for this molecule. Besides these, none of the complexes (3, 4, 2a, 3a and 4a) computed to possess large energy barrier and this is affirmed by the experiments. These observed differences in the magnetic properties are correlated to the Ln-Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, spin density, NBO and Wiberg bond analysis implied stronger Ln...H–BH agostic interaction for pyrazole analogues. Further, QTAIM analysis reveals the physical nature of coordination, covalent, and fine details of the agostic interactions in all the eight complexes studied. Quite interestingly, for the first time, using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides and this is expected to have a far reaching outcome beyond the examples studied.
Volume 131 Issue 12 December 2019 Article ID 0124
Actinide molecular magnets are of great interest in the area molecular magnetism as they possess strong covalency and spin-orbit coupling that their 4f congeners lack. Despite these known advantages, the actinide based molecular magnets have not been explored in detail due to the limited availability of actinidesalts. While theoretical tools are proven to be useful in lanthanide chemistry towards prediction, they are still at an infant stage in actinide chemistry. In this manuscript, we have attempted to utilise CASSCF/RASSI-SO calculations to predict suitable pseudo D5h molecules possessing attractive magnetic properties. To begin with, we have undertaken an extensive benchmarking of the methodology employed by studying two sets of isostructural, [NdTp3], [UTp3], [Nd(COT²)2]-, [U(COT²)2]- {Tp- = trispyrazolylborate, COT² = bis(trimethylsilyl)cyclooctatetraenyl dianion} complexes. The method assessment reveals that the methodology employed is reliable as this has reproduced the experimental observables. With this, we have moved forward with prediction where pseudo-D5h symmetric [L2M(H2O)5][I]3L2.(H2O) {M = Nd, U, Pu; L =tBuPO(NHiPr)2} systems are modelled from their Nd(III) X-ray structure. Our calculations reveal that the Uranium complex studied possess superior SIM characteristics compared to its lanthanide analogue. Plutonium complex has prolate electron density at the ground state, and hence the ligand environment isunsuitable for yielding SIM behaviour. The role of solvent molecules, counter anions and equatorial and axial ligand are explored and tantalizing prediction with a barrier height of 1403.3 and 989.5 cm-1 are obtained for [tBuPO(NHiPr)2-U-tBuPO(NHiPr)2]3+ and [Pu(H2O)5]3+ models, respectively and this paves the way for synthetic chemist to target such geometries in actinide based SIMs.
Volume 135 All articles Published: 14 March 2023 Article ID 0019
RESHMA JOSE GARIMA BANGAR SOURAV PAL GOPALAN RAJARAMAN
More than 47,000 articles have been published in the area of Metal-Organic Framework since itsseminal discovery in 1995, exemplifying the intense research carried out in this short span of time. Among other applications, gas adsorption and storage are perceived as central to the MOFs research, and more than 10,000 MOFs structures are reported to date to utilize them for various gas storage/separation applications.Molecular modeling, particularly based on density functional theory, played a key role in (i) understanding the nature of interactions between the gas and the MOFs geometry (ii) establishing various binding pockets and relative binding energies, and (iii) offering design clues to improve the gas uptake capacity of existing MOF architectures. In this review, we have looked at various MOFs that are studied thoroughly using DFT/periodic DFT (pDFT) methods for CO2, H2, O2, and CH4 gases to provide a birds-eye-view on how various exchange-correlation functionals perform in estimating the binding energy for various gases and how factors such as nature of the (i) metal ion, (ii) linkers, (iii) ligand, (iv) spin state and (v) spin-couplings play a role in this process with selected examples. While there is still room for improvement, the rewards offered by the molecular modelling of MOFs were already substantial that we advocate experimental and theoretical studies to go hand-in-hand to undercut the trial-and-error approach that is often perceived in the selection of MOFs and gas partners in this area.
The importance of density functional theory-based molecular modeling studies in offering design clues to improve the gas adsorption and storage capacity of existing MOF architectures is discussed here. The use of DFT-based investigation in conjunction with experimental synthesis is an imperative tool in designing new-generation MOFs with enhanced uptake capacity.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.