Ashoka G Samuelson
Articles written in Journal of Chemical Sciences
Volume 93 Issue 4 May 1984 pp 729-739 Inorganic Chemistry
Transition metals catalyse a variety of organic reactions, of which the ring opening of strained ring organic molecules generated a lot of interest. Theoreticians predicted a metal orbital catalysed pathway, which involved concerted bond breaking and bond forming. On the other hand experimentalists were able to show that the reaction was not proceeding through a concerted pathway by intercepting the intermediates involved. There remained, however, two ring systems methylenecyclopropanes and cyclobutenes—whose reactions with metal complexes seemed to be of a concerted nature. An analysis of the reactions of different metal complexes with these ring systems and the theoretical predictions provide a rationale for understanding these reactions.
Volume 106 Issue 3 June 1994 pp 787-787
Substituent effects on the insertion of heterocumulenes into copper (I) aryloxides
Volume 107 Issue 4 August 1995 pp 255-271
Structure and reactivity of copper(I) oligomers
Santosh P Abraham Ashoka G Samuelson M Nethaji
The reactivity of oligomeric copper(I) complexes towards test electrophiles and hydrogen have been studied. The complexes exhibit similar reactivity patterns in most cases. Photochemical irradiation of the tetramer
Volume 112 Issue 3 June 2000 pp 433-433
Synthesis, structure and reactivity of a water-soluble copper(I) complex
D Saravana Bharathi Ashoka G Samuelson N K Lokanath M A Shridhar Sashidara Prasad
Volume 118 Issue 3 May 2006 pp 237-242
Chinnappan Sivasankar Christina Baskaran Ashoka G Samuelson
Reaction of oligomeric Cu(I) complexes [Cu(Μ-S-C(=NR)(O-Ar-CH3)]n with Lewis acids gave Cu(I) carbene complexes, which were characterized by1H and13C NMR spectroscopy. Cu(I) carbene complexes could be directly generated from RNCS, Cu(I)-OAr and Lewis acids; this method can be used to prepare Cu(I) carbene complexes with different substitutents on the carbene carbon. The complexes were unreactive towards olefins and do not undergo cyclopropanation. Electronic structure calculations (DFT) show that the charge on the carbene carbon plays an important role in controlling the reactivity of the carbene complex.
Volume 118 Issue 6 November 2006 pp 569-573
On the key role of water in the allylic activation catalysed by Pd (II)
Rakesh Kumar Sharma Ashoka G Samuelson
Palladium and platinum complexes of bisphosphinites and bisphosphines derived from mandelic acid have been prepared and characterized. Their ability to catalyze allylation of imines with allyltributylstannane has been studied. Bisphophinite complexes of Pd (II) are shown to be ideal and they work best in the presence of one equivalent of water. The near neutral conditions employed make the catalysts suitable for a wide variety of substrates.
Volume 123 Issue 1 January 2011 pp 29-36
Akshai Kumar Ashoka G Samuelson
The insertion reactions of zirconium(IV) 𝑛-butoxide and titanium(IV) 𝑛-butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion. The intermediate metallacycle extrudes a new heterocumulene, different from the two that have inserted leading to metathesis. As the reaction is reversible, catalytic metathesis is feasible. In stoichiometric reactions heterocumulene insertion, metathesis and metathesis cum insertion products are observed. However, catalytic amounts of the metal alkoxide primarily led to metathesis products. It is shown that zirconium alkoxides promote catalytic metathesis (isocyanates, carbon dioxide) more efficiently than the corresponding titanium alkoxide. The difference in the metathetic activity of these alkoxides has been explained by a computational study using model complexes Ti(OMe)4 (
Volume 124 Issue 6 November 2012 pp 1343-1352
Akshai Kumar Ashoka G Samuelson
A theoretical study has been carried out at the B3LYP/LANL2DZ level to compare the reactivity of phenyl isocyanate and phenyl isothiocyanate towards titanium(IV) alkoxides. Isocyanates are shown to favour both mono insertion and double insertion reactions. Double insertion in a head-to-tail fashion is shown to be more exothermic than double insertion in a head-to-head fashion. The head-to-head double insertion leads to the metathesis product, a carbodiimide, after the extrusion of carbon dioxide. In the case of phenyl isothiocyanate, calculations favour the formation of only mono insertion products. Formation of a double insertion product is highly unfavourable. Further, these studies indicate that the reverse reaction involving the metathesis of N,N'-diphenyl carbodiimide with carbon dioxide is likely to proceed more efficiently than the metathesis reaction with carbon disulphide. This is in excellent agreement with experimental results as metathesis with carbon disulphide fails to occur. In a second study, multilayer MM/QM calculations are carried out on intermediates generated from reduction of titanium(IV) alkoxides to investigate the effect of alkoxy bridging on the reactivity of multinuclear Ti species. Bimolecular coupling of imines initiated by Ti(III) species leads to a mixture of diastereomers and not diastereoselective coupling of the imine. However if the reaction is carried out by a trimeric biradical species, diastereoselective coupling of the imine is predicted. The presence of alkoxy bridges greatly favours the formation of the d,l (±) isomer, whereas the intermediate without alkoxy bridges favours the more stable meso isomer. As a bridged trimeric species, stabilized by bridging alkoxy groups, correctly explains the diastereoselective reaction, it is the most likely intermediate in the reaction.
Volume 127 Issue 8 August 2015 pp 1329-1338 Regular Articles
Arun Kumar Pandiakumar Ashoka G Samuelson
The reaction of [Ru(𝜂6-cymene)Cl2]2 and PPh2Cl in the ratio 1:2 gives a stable [Ru(𝜂6-cymene) Cl2(PPh2Cl)] complex. Attempts to make the cationic [Ru(𝜂6-cymene)Cl(PPh2Cl)2]Cl with excess PPh2Cl and higher temperatures led to adventitious hydrolysis and formation of [Ru(𝜂6-cymene)Cl2 (PPh2OH)]. Attempts to make a phosphinite complex by reacting [Ru(𝜂6-cymene)Cl2]2 with PPh2Cl in the presence of an alcohol results in the reduction of PPh2Cl to give [Ru(𝜂6-cymene)Cl2(PPh2H)] and the expected phosphinite. The yield of the hydride complex is highest when the alcohol is 1-phenyl-ethane-1,2-diol. All three half-sandwich complexes are characterized by X-ray crystallography. Surprisingly, the conversion of chlorodiphenylphosphine to diphenylphosphine is mediated by 1-phenyl-ethane-1,2-diol even in the absence of the ruthenium half-sandwich precursor.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.