• Anudeep Kumar Narula

      Articles written in Journal of Chemical Sciences

    • Facile synthesis of new thermally stable and organosoluble polyamide-imides based on non-coplaner phosphorus and silicon containing amines

      Seema Agrawal Anudeep Kumar Narula

      More Details Abstract Fulltext PDF

      Two new kinds of diamines, 3-[bis-(3-aminophenyl)-phosphinoyl)-phenyl]-3-(triphenylphosphoranylidene)-pyrrolidene-2,5-dione, (DAP) with phosphorus moiety and bis-(5-amino-naphthalene-1-yl) dimethyl silane (DAS) with silicon moiety are synthesized. A series of novel aromatic polyamide-imides (PAIs) are prepared from three dicarboxylic acids and synthesized diamines. The phosphorus and silicon containing diamines and all polymers are characterized by FT-IR, NMR spectroscopic techniques and elemental analysis. The polymers obtained have good thermal stability and glass transition temperature (T$_g$) in the range of 254-315°C. All these novel polyamide-imides (PAIs) contain 10% weight loss at the temperature above 506°C and more than 59% residue at 600°C in nitrogen atmosphere. The resulting polymeric films exhibit high optical transparency and inherent viscosity in the range of 0.68 to 0.79 dL/g. These polymers are found to be soluble in aprotic polar solvents such as NMP, DMSO, DMF and DMAc.Wide angle X-ray diffraction revealed that these polymers are predominantly amorphous in nature.

    • Synthesis and characterization of heat-resistant and soluble poly(amide-imide)s from unsymmetrical dicarboxylic acid containing 2-(triphenyl phosphoranylidene) moiety and various aromatic diamines

      Seema Agrawal Anudeep Kumar Narula

      More Details Abstract Fulltext PDF

      An unsymmetrical and non-coplaner heterocyclic phosphorus containing dicarboxylic acid monomer, (DCA-3) is successfully synthesized with high purity. A series of novel aromatic poly(amide-imide)s having ether or/sulphur or/fluorine or/phosphorus containing phenyl moieties in their backbone are then prepared via a direct phosphorylation polycondensation of synthesized dicarboxylic acid with various aromatic diamines. Chemical structures of DCA-3 as well as resulting polymers are confirmed by FT-IR, NMR spectroscopic techniques and elemental analysis. These polymers are readily soluble in a variety of aprotic polar solvents such as NMP, DMSO, DMAc and DMF, etc. UV spectra showed that all poy(amide-imide)s films exhibit high optical transparency. In addition, the glass transition temperatures (Tg) of these polymers were determined by differential scanning calorimetry and found in the range 271–346°C. Furthermore, thermogravimetric analysis of these polymers showed good thermal stability, 10% weight loss at temperature in excess of 538°C and char yield at 700°C in nitrogen ranging from 68 to 79%. From wide-angle X-ray diffraction experiments, all polymers showed amorphous behaviour.

  • Journal of Chemical Sciences | News

© 2021-2022 Indian Academy of Sciences, Bengaluru.