Amita Wadehra
Articles written in Journal of Chemical Sciences
Volume 115 Issue 5-6 October 2003 pp 349-364
For the NO molecule, modelled as a Morse oscillator, time-dependent (TD) nuclear Schrödinger equation has been numerically solved for the multiphoton vibrational dynamics of the molecule under a far-infrared laser of wavelength 10503 nm, and four different intensities,
Volume 116 Issue 2 March 2004 pp 129-129 Erratum
Volume 117 Issue 5 September 2005 pp 401-409
The electron density changes in molecular systems in the presence of external electric fields are modeled for simplicity in terms of the induced charges and dipole moments at the individual atomic sites. A chemical potential equalisation scheme is proposed for the calculation of these quantities and hence the dipole polarizability within the framework of density functional theory based linear response theory. The resulting polarizability is expressed in terms of the contributions from individual atoms in the molecule. A few illustrative numerical calculations are shown to predict the molecular polarizabilities in good agreement with available results. The usefulness of the approach to the calculation of intermolecular interaction needed for computer simulation is highlighted.
Volume 119 Issue 5 September 2007 pp 335-341
A time-dependent generalized non-linear Schrödinger equation (GNLSE) of motion was earlier derived in our laboratory by combining density functional theory and quantum fluid dynamics in threedimensional space. In continuation of the work reported previously, the GNLSE is applied to provide additional knowledge on the femtosecond dynamics of the electron density in the hydrogen molecule interacting with high-intensity laser fields. For this purpose, the GNLSE is solved numerically for many time-steps over a total interaction time of 100 fs, by employing a finite-difference scheme. Various time-dependent (TD) quantities, namely, electron density, ground-state survival probability and dipole moment have been obtained for two laser wavelengths and four different intensities. The high-order harmonics generation (HHG) is also examined. The present approach goes beyond the linear response formalism and, in principle, calculates the TD electron density to all orders of change.
Volume 124 Issue 1 January 2012 pp 43-50
By employing an intense microwave laser of wavelength 116.65 𝜇m with intensities $1 \times 10^{13}$ and $5 \times 10^{18}$Wcm−2, respectively, the conclusion is reached theoretically and computationally that it is possible to dissociate the CO molecule, modelled as a Morse oscillator. It is predicted that for above-threshold dissociation (ATD), the molecule should absorb 1044 photons of the given wavelength in order to reach the lowest edge of the vibrational continuum. A consistent analysis of the predicted dissociation process is provided though the time-dependent probability density, dissociation probability, norm, potential function, HHG and ATD spectra, obtained by numerically solving the time-dependent vibrational Schödinger equation.
Volume 135, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.