• AMALENDU CHANDRA

      Articles written in Journal of Chemical Sciences

    • Dynamics of polar solvation: Route to single exponential relaxation via translational diffusion

      Biman Bagchi Amalendu Chandra

      More Details Abstract Fulltext PDF

      A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.

    • Microscopic expression for time-dependent solvation energy of ions and dipoles in dense polar liquids

      Amalendu Chandra Biman Bagchi

      More Details Abstract Fulltext PDF

      Microscopic expressions for the time dependence of solvation energies of newly created ions and dipoles in a dense dipolar liquid are presented. It is shown that: (i) the dynamics of solvation of an ion differ considerably from that of a dipole, especially that the long wavelength (k=0) component of solvent response is totally absent for dipoles, and (ii) the translational modes of the solvent molecules lead to a breakdown of Onsager’s conjecture on the distance dependence of solvent polarization relaxation.

    • Effects of hydrogen-bond environment on single particle and pair dynamics in liquid water

      Amalendu Chandra Snehasis Chowdhuri

      More Details Abstract Fulltext PDF

      We have performed molecular dynamics simulations of liquid water at 298 and 258 K to investigate the effects of hydrogen-bond environment on various single-particle and pair dynamical properties of water molecules at ambient and supercooled conditions. The water molecules are modelled by the extended simple point charge (SPC/E) model. We first calculate the distribution of hydrogen-bond environment in liquid water at both temperatures and then investigate how the self-diffusion and orientational relaxation of a single water molecule and also the relative diffusion and relaxation of the hydrogen-bond of a water pair depend on the nature of the hydrogen-bond environment of the tagged molecules. We find that the various dynamical quantities depend significantly on the hydrogen-bond environment, especially at the supercooled temperature. The present study provides a molecular-level insight into the dynamics of liquid water under ambient and supercooled conditions.

    • Filled and empty states of carbon nanotubes in water: Dependence on nanotube diameter, wall thickness and dispersion interactions

      Malay Rana Amalendu Chandra

      More Details Abstract Fulltext PDF

      We have carried out a series of molecular dynamics simulations of water containing a narrow carbon nanotube as a solute to investigate the filling and emptying of the nanotube and also the modifications of the density and hydrogen bond distributions of water inside and also in the vicinity of the outer surfaces of the nanotube. Our primary goal is to look at the effects of varying nanotube diameter, wall thickness and also solute-solvent interactions on the solvent structure in the confined region also near the outer surfaces of the solute. The thickness of the walls is varied by considering single and multi-walled nanotubes and the interaction potential is varied by tuning the attractive strength of the 12-6 pair interaction potential between a carbon atom of the nanotubes and a water molecule. The calculations are done for many different values of the tuning parameter ranging from fully Lennard-Jones to pure repulsive pair interactions. It is found that both the solvation characteristics and hydrogen bond distributions can depend rather strongly on the strength of the attractive part of the solute-water interaction potential. The thickness of the nanotube wall, however, is found to have only minor effects on the density profiles, hydrogen bond network and the wetting characteristics. This indicates that the long range electrostatic interactions between water molecules inside and on the outer side of the nanotube do not make any significant contribution to the overall solvation structure of these hydrophobic solutes. The solvation characteristics are primarily determined by the balance between the loss of energy due to hydrogen bond network disruption, cavity repulsion potential and offset of the same by attractive component of the solute-water interactions. Our studies with different system sizes show that the essential features of wetting and dewetting characteristics of narrow nanotubes for different diameter and interaction potentials are also present in relatively smaller systems consisting of about five hundred molecules.

    • Hydrogen bond dynamics and vibrational spectral diffusion in aqueous solution of acetone: A first principles molecular dynamics study

      Bhabani S Mallik Amalendu Chandra

      More Details Abstract Fulltext PDF

      We present an ab initio molecular dynamics study of vibrational spectral diffusion and hydrogen bond dynamics in aqueous solution of acetone at room temperature. It is found that the frequencies of OD bonds in the acetone hydration shell have a higher stretch frequency than those in the bulk water. Also, on average, the frequencies of hydration shell OD modes are found to increase with increase in the acetone-water hydrogen bond distance. The vibrational spectral diffusion of the hydration shell water molecules reveals three time scales: A short-time relaxation (∼80 fs) corresponding to the dynamics of intact acetone-water hydrogen bonds, a slower relaxation (∼1.3 ps) corresponding to the lifetime of acetone-water hydrogen bonds and another longer time constant (∼12 ps) corresponding to the escape dynamics of water from the solute hydration shell. The present first principles results are compared with those of available experiments and classical simulations.

    • Vibrational echo spectral observables and frequency fluctuations of hydration shell water around a fluoride ion from first principles simulations

      DEEPAK OJHA AMALENDU CHANDRA

      More Details Abstract Fulltext PDF

      Aqueous solution of a fluoride ion at 300K is studied using the method of ab initio molecular dynamics simulation. Instantaneous fluctuations in vibrational frequencies of local OD stretch modes of deuterated water are calculated using a time-series analysis of the simulated trajectory. The vibrational spectraldiffusion of OD modes in the first and second solvation shells and also in bulk of the aqueous fluoride ionic solution are studied through calculations of the frequency time correlation function (FTCF), joint probability distributions, slope of three pulse photon echo (S3PE) and two dimensional infrared spectrum (2D-IR). The vibrational spectral dynamics in the first solvation shell shows decay with three components which can be correlated with the dynamics of intact ion-water hydrogen bonds, ion-water hydrogen bond lifetime and the escape dynamics of water molecules from the solvation shell. The vibrational spectral diffusion of OD modes in the second solvation shell and in the bulk show very similar decay behavior. The timescales obtained from FTCF, S3PE and the slope of nodal line (SNL) of 2D-IR are found to be in reasonable agreement with each others.

  • Journal of Chemical Sciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.