• Yong Zhang

      Articles written in Journal of Biosciences

    • Productivity and biochemical properties of green tea in response to full-length and functional fragments of HpaGXooc, a harpin protein from the bacterial rice leaf streak pathogen Xanthomonas oryzae pv. oryzicola

      Xiaojing Wu Tingquan Wu Juying Long Qian Yin Yong Zhang Lei Chen Ruoxue Liu Tongchun Gao Hansong Dong

      More Details Abstract Fulltext PDF

      Harpin proteins from plant pathogenic bacteria can stimulate hypersensitive cell death (HCD), drought tolerance, defence responses against pathogens and insects in plants, as well as enhance plant growth. Recently, we identified nine functional fragments of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, the pathogen that causes bacterial leaf streak in rice. Fragments HpaG1–94, HpaG10–42, and HpaG62–138, which contain the HpaGXooc regions of the amino acid sequence as indicated by the number spans, exceed the parent protein in promoting growth, pathogen defence and HCD in plants. Here we report improved productivity and biochemical properties of green tea (Camellia sinensis) in response to the fragments tested in comparison with HpaGXooc and an inactive protein control. Field tests suggested that the four proteins markedly increased the growth and yield of green tea, and increased the leaf content of tea catechols, a group of compounds that have relevance in the prevention and treatment of human diseases. In particular, HpaG1–94 was more active than HpaGXooc in expediting the growth of juvenile buds and leaves used as green tea material and increased the catechol content of processed teas. When tea shrubs were treated with HpaHXooc and HpaG1–94 compared with a control, green tea yields were over 55% and 39% greater, and leaf catechols were increased by more than 64% and 72%, respectively. The expression of three homologues of the expansin genes, which regulate plant cell growth, and the CsCHS gene encoding a tea chalcone synthase, which critically regulates the biosynthesis of catechols, were induced in germinal leaves of tea plants following treatment with HpaG1–94 or HpaGXooc. Higher levels of gene expression were induced by the application of HpaG1–94 than HpaGXooc. Our results suggest that the harpin protein, especially the functional fragment HpaG1–94, can be used to effectively increase the yield and improve the biochemical properties of green tea, a drink with medicinal properties.

    • Circ-WDR27 regulates mycobacterial vitality and secretion of inflammatory cytokines in Mycobacterium tuberculosis-infected macrophages via the miR-370-3p/FSTL1 signal network


      More Details Abstract Fulltext PDF

      Tuberculosis (TB) is a common disease caused by Mycobacterium tuberculosis (M.tb) infection. Our study was to explore the function and mechanism of circular RNA WD repeat domain 27 (circ-WDR27) in TB progression. Cell viability and apoptosis were detected by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide assay and flow cytometry. Protein quantification was performed by Western blot. Inflammatory cytokines were examined using enzyme-linked immunosorbent assay. RNA levels were assayed via quantitative reverse-transcription polymerase chain reaction. M.tb survival was assessed using colony-forming unit assay. Target binding was analyzed via dual-luciferase reporter assay and RNA immunoprecipitation assay. Cell damages were induced by M.tb infection, and inflammatory cytokines were secreted in human macrophages. Circ-WDR27 was downregulated in TB patients and M.tb-infected macrophages. Circ-WDR27 overexpression reduced M.tb survival and released inflammatory cytokines in macrophages. Circ-WDR27 acted as a sponge for miR-370-3p. Circ-WDR27-mediated inhibition of TB progression was partly achieved by sponging miR-370-3p. miR-370-3p directly targeted Follistatin-like protein 1 (FSTL1). FSTL1 suppressed M.tb-induced cell damages, and reversed the protective role of miR-370-3p inhibition in TB progression. Circ-WDR27 regulated FSTL1 expression by targeting miR-370-3p. These results showed that circ-WDR27 repressed M.tb vitality and stimulated pro-inflammatory cytokines in M.tb-infected macrophages by affecting the miR-370-3p/FSTL1 axis.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.