• Yifu Guan

      Articles written in Journal of Biosciences

    • Effect of LNA- and OMeN-modified oligonucleotide probes on the stability and discrimination of mismatched base pairs of duplexes

      Ying Yan Jing Yan Xianyu Piao Tianbiao Zhang Yifu Guan

      More Details Abstract Fulltext PDF

      Locked nucleic acid (LNA) and 2′-𝑂-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3′-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target–probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.

    • Identification of a premature termination of DNA polymerization in vitro by Klenow fragment mutants

      Guojie Zhao Hua Wei Yifu Guan

      More Details Abstract Fulltext PDF

      DNA polymerization products by Klenow fragment (KF) are blunt-ended. In the present study, we found that the Klenow fragment mutants with partial deletions of thumb subdomain were unable to extend primers to the 5′ terminal of templates, thus creating 5′ overhanging sticky ends 2 nt long. We termed this phenomenon as PmTP (premature termination of polymerization). The KF mutants produced homogenous sticky-ended products only under mild reaction conditions, whereas under vigorous reaction conditions, the sticky ends were prone to be blunt-ended. It was also identified that deletions of more than four residues of KF thumb subdomain could induce PmTP, and two-residue deletion of KF thumb subdomain only induced PmTP in a lower-concentration situation. Structure modelling analysis suggested that shortening or destruction of 𝛼 helix H1 at the tip of the thumb subdomain was crucial to PmTP, while the conserved residues in front of 𝛼 helix was less important. PmTP might be caused by the reduced DNA-binding affinity of the mutants. The sticky ends made by PmTP have potential applications in gene splicing and molecular cloning techniques.

    • Realizing directional cloning using sticky ends produced by 3ʹ-5ʹ exonuclease of Klenow fragment

      Guojie Zhao Jun Li Tianyu Hu Hua Wei Yifu Guan

      More Details Abstract Fulltext PDF

      The Klenow fragment (KF) has been used to make the blunt end as a tool enzyme. Its 5′-3′ polymerase activity can extend the 5′ overhanging sticky end to the blunt end, and 3′-5′ exonuclease activity can cleave the 3′ overhanging sticky end to the blunt end. The blunt end is useful for cloning. Here, we for the first time determined that a sticky end can be made by using the 3′-5′ exonuclease activity of KF. We found that KF can cleave the blunt end into certain sticky ends under controlled conditions. We optimized enzyme cleavage conditions, and characterized the cleaved sticky ends to be mainly 2 nt 5′ overhang. By using these sticky ends, we realized ligation reaction in vitro, and accomplished cloning short oligonucleotides directionally with high cloning efficiency. In some cases, this method can provide sticky end fragments in large scale for subsequent convenient cloning at low cost.

    • 2ʹ-O-methyl nucleotide modified DNA substrates influence the cleavage efficiencies of BamHI and BglII

      Zhaoxue Tong Bin Zhao Guojie Zhao Hong Shang Yifu Guan

      More Details Abstract Fulltext PDF

      Induction of endonucleolytic DNA cleavage is an essential event that links the initiating stimuli to the final effects of cells. The cleavage efficiency and thus the final yield could be affected by many factors, including structures of DNA substrates, composite structures of enzymes–substrates or enzymes–nucleic analogs and so on. However, it is not clear whether a nucleotide derivative-substituted in DNA substrates can influence the efficiency of enzymatic cleavage. To investigate the effect of sugar pucker conformation on DNA–protein interactions, we used 2′-𝑂-methyl modified nucleotides (OMeN) to modify DNA substrates of isocaudemers BamHI and BglII in this study, and used FRET assay as an efficient method for analysis of enzyme cleavage. Experimental results demonstrated that OMeN-substituted recognition sequences influenced the cleavage rates significantly in a position-dependent manner. OMeN substitutions can reduce the cleavage as expected. Surprisingly, OMeN substitutions can also enhance the cleavage rates. The kinetics parameters of 𝑉max and 𝐾m have been obtained by fitting the Michaelis-Menten kinetic equation. These 2′-OMe nucleotides could behave as a regulatory element to modulate the enzymatic activity in vitro, and this property could enrich our understanding about the endonuclease cleavage mechanism and enhance our ability to regulate the enzymatic cleavage efficiency for applications in synthetic biology.

    • LNA-modified isothermal oligonucleotide microarray for differentiating bacilli of similar origin

      Jing Yan Ying Yuan Runqing Mu Hong Shang Yifu Guan

      More Details Abstract Fulltext PDF

      Oligonucleotide microarray has been one of the most powerful tools in the ‘Post-Genome Era’ for its high sensitivity, high throughput and parallel processing capability. To achieve high detection specificity, we fabricated an isothermal microarray using locked nucleic acid (LNA)-modified oligonucleotide probes, since LNA has demonstrated the advanced ability to enhance the binding affinity toward their complementary nucleotides. After designing the nucleotide sequences of these oligonucleotide probes for gram-positive bacilli of similar origin (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus megaterium and Bacillus circulans), we unified the melting temperatures of these oligonucleotide probes by modifying some nucleotides using LNA. Furthermore, we optimized the experimental procedures of hydrating microarray slides, blocking side surface as well as labelling the PCR products. Experimental results revealed that KOD Dash DNA polymerase could efficiently incorporate Cy3-dCTP into the PCR products, and the LNA-isothermal oligonucleotide microarray were able to distinguish the bacilli of similar origin with a high degree of accuracy and specificity under the optimized experimental condition.

  • Journal of Biosciences | News

      Forthcoming Special issue.

    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".

      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.

      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.

      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.