• Yi-Ling Chiou

      Articles written in Journal of Biosciences

    • Guanidination of notexin alters its membrane-damaging activity in response to sphingomyelin and cholesterol

      Pei-Hsiu Kao Yi-Ling Chiou Shinne-Ren Lin Long-Sen Chang

      More Details Abstract Fulltext PDF

      To elucidate the contribution of phospholipase A2 (PLA2) activity of notexin to its ability to perturb membranes, comparative studies on the interaction of notexin and guanidinated notexin (Gu-notexin) with egg yolk phosphatidylcholine (EYPC), EYPC/egg yolk sphingomyelin (EYSM) and EYPC/EYSM/cholesterol vesicles were conducted. EYSM notably reduced the membrane-damaging activity of notexin against EYPC vesicles, but had an insignificant influence on that of Gu-notexin. Unlike the effects noted with notexin, inactivation of PLA2 activity by EDTA led to a reduction in the ability of Gu-notexin to induce EYPC/EYSM vesicle leakage and to increase Gu-notexin-induced membrane permeability of EYPC/EYSM/cholesterol vesicles. The geometrical arrangement of notexin and Gu-notexin in contact with either EYPC/EYSM vesicles or EYPC/EYSM/cholesterol vesicles differed. Moreover, global conformation of notexin and Gu-notexin differed in either Ca2+-bound or metal-free states. These results indicate that notexin and Gu-notexin could induce membrane permeability without the involvement of PLA2 activity, and suggest that guanidination alters the membrane-bound mode of notexin on damaging phospholipid vesicles containing sphingomyelin and cholesterol.

    • Quercetin modulates activities of Taiwan cobra phospholipase A2 via its effects on membrane structure and membrane-bound mode of phospholipase A2

      Yi-Ling Chiou Shinne-Ren Lin Wan-Ping Hu Long-Sen Chang

      More Details Abstract Fulltext PDF

      The goal of the present study is to elucidate the mechanism of quercetin on modulating Naja naja atra phospholipase A2 (PLA2) activities. Sphingomyelin inhibited PLA2 enzymatic activity and membrane-damaging activity against egg yolk phosphatidylcholine (EYPC), while cholesterol and quercetin abrogated the sphingomeyelin inhibitory effect. Quercetin incorporation led to a reduction in PLA2 enzymatic activity and membrane-damaging activity toward EYPC/sphingomyelin/cholesterol vesicles. Both cholesterol and quercetin increased detergent resistance and reduced membrane fluidity of EYPC/sphingomyelin vesicles. Quercetin reduced detergent insolubility but increased ordered lipid packing of EYPC/sphingomyelin/cholesterol vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that quercetin altered the membrane-bound mode of PLA2 differently upon absorption onto the membrane bilayers of different lipid compositions. However, 8-anilinonaphthalene sulphonate-binding assay revealed that quercetin marginally affected the interaction between active site of PLA2 with phospholipid vesicles. Collectively, our data indicate that membrane-inserted quercetin modulates PLA2 interfacial activity and membrane-damaging activity via its effects on membrane structure and membrane-bound mode of PLA2.

  • Journal of Biosciences | News

      Forthcoming Special issue.


    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".


      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.


      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.


      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
      <
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.