• XIN ZHANG

      Articles written in Journal of Biosciences

    • Downregulation of hsa_circ_0000936 sensitizes resistant glioma cells to temozolomide by sponging miR-1294

      LIN HUA LIFA HUANG XIN ZHANG HAOKE FENG

      More Details Abstract Fulltext PDF

      Glioma is one of the most aggressive forms of brain tumor and is hallmarked by high rate of mortality,metastasis and drug resistance. Herein, we explore the role of circular RNA (circRNA) hsa_circ_0000936 inthe resistance of glioma cells to temozolomide (TMZ). In this study, Relative changes in gene expression levelswere compared using qRT-PCR. The role of hsa_circ_0000936 was characterized by cell count kit -8 assay andflow cytometry. Luciferase reporter assay was carried out for target validation.We found that hsa_circ_0000936was upregulated in glioma tissues as compared to their adjacent normal tissues. Increased expression ofhsa_circ_0000936 was found in the glioma tissues of patients showing resistance to TMZ compared with thatof patients showing sensitivity to TMZ. The upregulation of hsa_circ_0000936 was also confirmed in TMZresistantglioma cells. miR-1294 was downregulated in TMZ-resistant glioma cells and identified as a directtarget of hsa_circ_0000936. Downregulation of hsa_circ_0000936 increased the sensitivity of TMZ-resistantglioma cells towards TMZ. Moreover, restoration of miR-1294 could abrogate the promoting effect ofhsa_circ_0000936 on TMZ resistance in TMZ-resistant glioma cells. In conclusion, downregulation ofhsa_circ_0000936 sensitizes TMZ-resistant glioma cells to TMZ by sponging miR-1294, suggesting thathsa_circ_0000936 may be a potential target for overcoming the resistance of glioma cells to TMZ.

    • High-throughput sequencing reveals the molecular mechanisms determining the stay-green characteristic in soybeans

      CHENG WANG LE GAO RUN ZHI LI YE WANG YANG YING LIU XIN ZHANG HAO XIE

      More Details Abstract Fulltext PDF

      Senescence is an internally systematized degeneration process leading to death in plants. Leaf yellowing, oneof the most prominent features of plant aging may lead to reduced crop yields. The molecular mechanism ofresponses to senescence in soybean leaves is not completely clear. In our research, two soybean varieties wereselected with different stay-green traits: stay-green variety (BN106) and non-stay-green variety (KF14). RNAsamples extracted from the leaves of two varieties were sequenced and compared using high-throughputsequencing. Six key enzyme genes in chlorophyll degradation pathways were studied to analyze the changes intheir expression at seedling, flowering and maturation stage. Meanwhile, the construction of the genetictransformation process had been constructed to identify the function of putative gene by RNA-interference. Atotal of 4329 DEGs were involved in 52 functional groups and 254 KEGG pathways. Twelve genes encodingsenescence-associated and inducible chloroplast stay-green protein showed significant differential expression.MDCase and PAO have a significant expression in BN106 that may be the key factors affecting the maintenanceof green characteristics. In addition, the function of GmSGRs has been identified by genetic transformation.The loss of GmSGRs may cause soybean seeds to change from yellow to green. In summary, ourresults revealed fundamental information about the molecular mechanism of aging in soybeans with differentstay-green characteristics. The work of genetic transformation lays a foundation for putative gene functionstudies that could contribute to postpone aging in soybeans.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.