• Subrata Basu Ray

      Articles written in Journal of Biosciences

    • The enigma of morphine tolerance: Recent insights

      Subrata Basu Ray Shashi Wadhwa

      More Details Fulltext PDF
    • Up-regulation of Μ-opioid receptors in the spinal cord of morphine-tolerant rats

      Subrata Basu Ray Himanshu Gupta Yogendra Kumar Gupta

      More Details Abstract Fulltext PDF

      Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of Μ-receptors within specific parts of the nervous system. However, reports on changes in the Μ-opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10-50 mg/kg, subcutaneously) for five days.In vitro tissue autoradiography for localization of Μ-receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of Μ-receptors in the superficial layers of the dorsal horn. This up-regulation of Μ-receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance

    • Enhanced analgesic effect of morphine-nimodipine combination after intraspinal administration as compared to systemic administration in mice

      Dilip Verma Subrata Basu Ray Ishan Patro Shashi Wadhwa

      More Details Abstract Fulltext PDF

      Calcium plays an important role in the pathophysiology of pain. A number of studies have investigated the effect of L-type calcium channel blockers on the analgesic response of morphine. However, the results are conflicting. In the present study, the antinociceptive effect of morphine (2–5 Μg) and nimodipine (1 Μg) co-administered intraspinally in mice was observed using the tail flick test. It was compared to the analgesic effect of these drugs (morphine — 250 Μg subcutaneously; nimodipine — 100 Μg intraperitoneally) after systemic administration. Nimodipine is highly lipophilic and readily crosses the blood brain barrier. Addition of nimodipine to morphine potentiated the analgesic response of the latter when administered through the intraspinal route but not when administered through systemic route. It may be due to direct inhibitory effect of morphine and nimodipine on neurons of superficial laminae of the spinal cord after binding to Μ-opioid receptors and L-type calcium channels respectively.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.