• S R Taboga

      Articles written in Journal of Biosciences

    • Silk formation mechanisms in the larval salivary glands ofApis mellifera (Hymenoptera: Apidae)

      Elaine C M Silva-Zacarin Regina L M Silva De Moraes S R Taboga

      More Details Abstract Fulltext PDF

      The mechanism of silk formation inApis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.

    • Programmed cell death in the larval salivary glands of Apis mellifera (Hymenoptera, Apidae)

      E C M Silva-Zacarin G A Tomaino M R Brocheto-Braga S R Taboga R L M Silva De Moraes

      More Details Abstract Fulltext PDF

      The morphological and histochemical features of degeneration in honeybee (Apis mellifera) salivary glands were investigated in 5th instar larvae and in the pre-pupal period. The distribution and activity patterns of acid phosphatase enzyme were also analysed. As a routine, the larval salivary glands were fixed and processed for light microscopy and transmission electron microscopy. Tissue sections were subsequently stained with haematoxylin–eosin, bromophenol blue, silver, or a variant of the critical electrolyte concentration (CEC) method. Ultrathin sections were contrasted with uranyl acetate and lead citrate. Glands were processed for the histochemical and cytochemical localization of acid phosphatase, as well as biochemical assay to detect its activity pattern. Acid phosphatase activity was histochemically detected in all the salivary glands analysed. The cytochemical results showed acid phosphatase in vesicles, Golgi apparatus and lysosomes during the secretory phase and, additionally, in autophagic structures and luminal secretion during the degenerative phase. These findings were in agreement with the biochemical assay. At the end of the 5th instar, the glandular cells had a vacuolated cytoplasm and pyknotic nuclei, and epithelial cells were shed into the glandular lumen. The transition phase from the 5th instar to the pre-pupal period was characterized by intense vacuolation of the basal cytoplasm and release of parts of the cytoplasm into the lumen by apical blebbing; these blebs contained cytoplasmic RNA, rough endoplasmic reticule and, occasionally, nuclear material. In the pre-pupal phase, the glandular epithelium showed progressive degeneration so that at the end of this phase only nuclei and remnants of the cytoplasm were observed. The nuclei were pyknotic, with peripheral chromatin and blebs. The gland remained in the haemolymph and was recycled during metamorphosis. The programmed cell death in this gland represented a morphological form intermediate between apoptosis and autophagy.

  • Journal of Biosciences | News

      Forthcoming Special issue.


    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".


      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.


      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.


      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
      <
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2023-2024 Indian Academy of Sciences, Bengaluru.