• Randhir Singh

      Articles written in Journal of Biosciences

    • Ureide biogenesis and the enzymes of ammonia assimilation and ureide biosynthesis in nitrogen fixing pigeonpea (Cajanus cajan) nodules

      Amarjit Randhir Singh

      More Details Abstract Fulltext PDF

      Allantoic acid production from IMP, XMP, inosine, xanthosine, hypoxanthine, xanthine, uric acid and allantoin was investigated by incubating each of these substrates withCajanus cajan cytosol and bacteroid fractions separately in the presence and absence of NAD+ and allopurinol. Allantoic acid synthesis by bacteroid fraction could only be observed with uric acid and allantoin as substrates. Addition of NAD+ or allopurinol to the reaction mixtures had no effect. However, with cytosol fraction, allantoic acid was produced by each of these substrates, with maximum rate with allantoin. With NAD+ or with allopurinol, allantoic acid was produced only with uric acid and allantoin as substrates. NADH production with cytosol fraction could again be observed with all the substrates. Except with uric acid and allantoin, allopurinol completely inhibited NADH formation. Regardless of the presence or absence of allopurinol, none of the substrates exhibited significant activity with bacteroid fraction. Based on the activities of glutamine synthetase, glutamate synthase, glutamate dehydrogenase, aspartate aminotransferase, asparagine synthetase, nucleotidase, nucleosidase, xanthine de-hydrogenase, uricase and allantoinase and their intracellular localisation in various nodule fractions, a probable pathway for the biogenesis of ureides in pigeonpea nodules has been proposed

    • Enzymes of ammonia assimilation and ureide biogenesis in developing pigeonpea (Cajanus cajan L.) nodules

      Amarjit Randhir Singh

      More Details Abstract Fulltext PDF

      Ammonia assimilatory and ureide biogenic enzymes were measured in the cytosol fraction of pigeonpea nodules during the period 15–120 days after sowing. The activity of enzymes involved in the initial assimilation of ammonia, i.e. glutamine synthetase, glutamate synthase, asparagine synthetase and aspartate aminotransferase, substantially increased activities during the period of plant growth and reached a maximum value around 105 days after sowing. These increases paralleled the increase in nodule mass, nitrogenase activity and ureide content in nodules. Though no regular pattern was obtained for their specific activities, yet these activities when expressed relative to the specific activity of nitrogenase were many fold higher at each stage of development. Similar increases were observed in the activities of enzymes associated with the formation of ureides from purines. In almost all cases, the activities were again maximum around 90–105 days after sowing. The specific activities of nucleotidase, nucleosidase, xanthine dehydrogenase, uricase and allantoinase, when expressed relative to the specific activity of nitrogenase at vegetative, flowering and podsetting stages were again many fold higher indicating the sufficiency of the levels of these enzymes for the biosynthesis of ureides. The data presented are consistent with the proposal that in ureide producing legumes, ammonia is initially assimilated into glutamine, aspartate, etc., which are metabolised for the denovo synthesis of purines. The purines are then utilised for the production of ureides by a group of enzymes investigated here

    • Characterization of cytosolic phosphoglucoisomerase from immature wheat (Triticum aestivum L.) endosperm

      R S Sangwan Randhir Singh

      More Details Abstract Fulltext PDF

      Phosphoglucoisomerase from cytosol of immature wheat endosperm was purified 650-fold by ammonium sulphate fractionation, isopropyl alcohol precipitation, DEAE-cellulose chromatography and gel filtration through Sepharose CL-6B. The enzyme, with a molecular weight of about 130,000, exhibited maximum activity at pH 8.1. It showed typical hyperbolic kinetics with both fructose 6-P and glucose 6-P withKm of 0.18 mM and 0.44mM respectively. On either side of the optimum pH, the enzyme had lower affinity for the substrates. Using glucose 6-P as the substrate, the equilibrium was reached at 27% fructose 6-P and 73% glucose 6-P with an equilibrium constant of 2.7. The ΔF calculated from the apparent equilibrium constant was +597 cal mol-1. The activation energy calculated from the Arrhenius plot was 5500 cal mol-1. The enzyme was completely inhibited by ribose 5-P, ribulose 5-P and 6-phosphogluconate, withKi values of 0.17, 0.25 and 0.14 mM respectively. The probable role of the enzyme in starch biosynthesis is discussed.

    • Enzyme activities associated with developing wheat(Triticum aestivum L.) grain amyloplasts

      R Mahajan Randhir Singh

      More Details Abstract Fulltext PDF

      Intact amyloplasts from endosperm of developing wheat grains have been isolated by first preparing the protoplasts and then fractionating the lysate of the protoplasts on percoll and ficoll gradients, respectively. Amyloplasts isolated as above were functional and not contaminated by cytosol or by organelles likely to be involved in carbohydrate metabolism. The enzyme distribution studies indicated that ADP-glucose pyrophosphorylase and starch synthase were confined to amyloplasts, whereas invertase, sucrose synthase, UDP-glucose pyrophosphorylase, hexokinase, phosphofructokinase-2 and fructose-2,6-P2ase were absent fro the amyloplast and mainly confined to the cytosol. Triose-P isomerase, glyceraldehyde-3-P dehydrogenase, phosphohexose isomerase, phosphoglucomutase, phosphofructokinase, aldolase, PPi-fructose-6-P-1 phosphotransferase, and fructose-l,6-P2ase, though predominantly cytosolic, were also present in the amyloplast. Based on distribution of enzymes, a probable pathway for starch biosynthesis in amyloplasts of developing wheat grains has been proposed.

    • Pod photosynthesis and seed dark CO2 fixation support oil synthesis in developingBrassica seeds

      H R Singal Gurmeet Talwar Anita Dua Randhir Singh

      More Details Abstract Fulltext PDF

      Rate of photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were determined in pods (siliqua), whereas rate of dark CO2 fixation, oil content and activities of enzymes involved in dark CO2 metabolism were measured in seeds ofBrassica campestris L. cv. Toria at different stages of pod/seed development. The period between 14 and 35 days after anthesis corresponded to active phase of seed development during which period, seed dry weight and oil content increased sharply. Rate of pod photosynthesis and activities of photosynthetic carbon reduction cycle enzymes were maximum in younger pods but sufficiently high levels were retained up to 40 days after anthesis. The rate of dark14CO2 fixation in seeds increased up to 21 days after anthesis and declined thereafter but maintaining sufficiently high rates till 35 days after anthesis. Similarly various enzymes viz., phosphoenolpyruvate carboxylase, NAD+-malate dehydrogenase and NADP+-malic enzyme, involved in dark CO2 metabolism retained sufficient activities during the above period. These enzyme activities were more than adequate to maintain the desired supply of malate which mainly arises from dark CO2 fixation in seeds and further translocated to leucoplasts for onward synthesis of fatty acids. Enzyme localization experiments revealed phosphoenolpyruvate carboxylase and enzymes of sucrose metabolism to be present only in cytosol, whereas enzymes of glycolysis were present both in cytosolic and leucoplastic fractions. These results indicated that oil synthesis in developingBrassica seeds is supported by pod photosynthesis and dark CO2 fixation in seeds as the former serves as the source of sucrose and the latter as a source of malate

    • Fatty acid synthesis by isolated leucoplasts from developingBrassica seeds: Role of nucleoside triphosphates and DHAP-shuttle as the source of energy

      Ranjan Gupta Randhir Singh

      More Details Abstract Fulltext PDF

      Fatty acid synthesis in leucoplasts isolated from developing seeds ofBrassica campestris was absolutely dependent on external source of ATP. None of the other nucleoside triphosphates could replace ATP in the reaction mixture. Use of ADP alone also resulted in reduced rates of fatty acid synthesis. However, in combination with inorganic phosphate or inorganic pyrophosphate, it improved the rate of fatty acid synthesis, giving up to 50% of the ATP-control activity. Inorganic phosphate or inorganic pyrophosphate alone again did not serve as an energy source for fatty acid synthesis. AMP, alongwith inorganic pyrophosphate could promote fatty acid synthesis to up to 42% of the activity obtained with ATP. The three components dihydroxy acetone phosphate, oxaloacetic acid, inorganic phosphate of dihydroxy acetone phosphate-shuttle together could restore 50% of the activity obtained with ATP. Omission of any one of the components of this shuttle drastically reduced the rate of fatty acid synthesis to 15–24% of the ATP-control activity. Inclusion of ATP in reaction mixtures containing shuttle components enhanced the rate of synthesis over control. The optimum ratio of shuttle components dihydroxy acetone phosphate, oxaloacetic acid, inorganic phosphate determined was 1:1:2. Maximum rates of fatty acid synthesis were obtained when dihydroxy acetate phosphate was used as the shuttle triose. Glyceraldehyde-3-P, 3-phosphoglycerate, 2-phosphoglycerate and phosphoenolpyruvate as shuttle trioses were around 35–60% as effective as dihydroxy acetone phosphate in promoting fatty acid synthesis. The results presented here indicate that although the isolated leucoplasts readily utilize exogenously supplied ATP for fatty acid synthesis, intraplastidic ATP could also arise from dihydroxy acetone phosphate shuttle components or other appropriate metabolites

  • Journal of Biosciences | News

© 2017-2019 Indian Academy of Sciences, Bengaluru.