• R Suresh

      Articles written in Journal of Biosciences

    • Quantitation of spermatogenesis by DNA flow cytometry: Comparative study among six species of mammals

      R Suresh G R Aravindan N R Moudgal

      More Details Abstract Fulltext PDF

      Suspensions of testicular germ cells from six species of mammals were prepared and stained for the DNA content with a fluorochrome (ethidium bromide) adopting a common technique and subjected to DNA flow cytometry. While uniform staining of the germ cells of the mouse, hamster, rat and monkey could be obtained by treating with 0.5% pepsin for 60 min followed by staining with ethidium bromide for 30 min, that of the guinea pig and rabbit required for optimal staining pepsinization for 90 min and treatment with ethidium bromide for 60 min. The procedure adopted here provided a uniform recovery of over 80% of germ cells with each one of the species tested and the cell population distributed itself according to the DNA content (expressed as C values) into 5 major classes-spermatogonia (2C), cells in S-phase, primary spermatocytes (4C), round spermatids (1C), and elongating/elongated spermatids (HC). Comparison of the DNA distribution pattern of the germ cell populations between species revealed little variation in the relative quantities of cells with 2C (8–11%), S-phase (6–9%), and 4C (6–9%) amount of DNA. Though the spermatid cell populations exhibited variations (1C:31–46%, HCl:7–20% and and HC2:11–25%) they represented the bulk of germ cells (70–80%). The overall conversion of 2C to 1C (1C:2C ratio) and meiotic transformation of 4C cells to 1C (1C:4C ratio) kinetics were relatively constant between the species studied. The present study clearly demonstrates that DNA flow cytometry can be adopted with ease and assurance to quantify germ cell transformation and as such spermatogenesis by analysing a large number of samples with consistency both within and across the species barrier. Any variation from the norms in germ cell proportions observed following treatment, fore.g. hormonal stimulation or deprivation can then be ascribed due to a specific effect of the hormone/drug on single/multiple steps in germ cell transformation

    • Correlation of seasonal changes in sperm output with endocrinological changes in the adult male bonnet monkey,Macaca radiata

      R Medhamurthy R Suresh Sunil S Paul N R Moudgal

      More Details Abstract Fulltext PDF

      We have examined the monthly variations in sperm output and attempted to correlate the profiles of endocrine hormones secreted with the sperm counts throughout the year in the adult male bonnet monkey. As previously reported, there was a distinct spurt in sperm output beginning September through December months. A concomitant increase in serum testosterone and prolactin concentrations were also noted during September through November (mid and post-monsoon season). Although there was a marked increase in gonadotropin releasing hormone stimulated testosterone secretion, the peak testosterone concentrations post gonadotropin releasing hormone injection did not vary significantly (P > 0.05) throughout the year. Basal serum follicle stimulating hormone concentrations did not vary significantly (P > 0.05) during April to June months compared to September-November months. Serum inhibin concentration remained unaltered throughout the year, except in the month of March. The results of this study provide evidence for annual rhythms in prolactin and testosterone secretion and a distinct seasonality in the sperm output of the adult male bonnet monkey, but the pituitary responsiveness to exogenous gonadotropin releasing hormone remains unaltered throughout the year. Because of the existence of seasonality as noted in the present study, future studies which utilize the adult male bonnet monkey as an experimental model need to take into consideration the seasonal effects on reproductive function in this species.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.