• R P Tripathi

      Articles written in Journal of Biosciences

    • Functional magnetic resonance imaging of the primary motor cortex in humans: response to increased functional demands

      S Khushu S S Kumaran R P Tripathi A Gupta P C Jain V Jain

      More Details Abstract Fulltext PDF

      Functional magnetic resonance imaging (fMRI) studies have been performed on 20 right handed volunteers at 1.5 Tesla using echo planar imaging (EPI) protocol. Index finger tapping invoked localized activation in the primary motor area. Consistent and highly reproducible activation in the primary motor area was observed in six different sessions of a volunteer over a period of one month. Increased tapping rate resulted in increase in the blood oxygenation level dependent (BOLD) signal intensity as well as the volume/area of activation (pixels) in the contra-lateral primary motor area up to tapping rate of 120 taps/min (2 Hz), beyond which it saturates. Activation in supplementary motor area was also observed. The obtained results are correlated to increased functional demands.

    • Cortical activation during finger tapping in thyroid dysfunction: A functional magnetic resonance imaging study

      S Khushu S Senthil Kumaran T Sekhri R P Tripathi P C Jain V Jain

      More Details Abstract Fulltext PDF

      Thyroid dysfunction is associated with attention deficit and impairment of the motor system (muscle weakness and fatigue). This paper investigates possible motor function deficit in thyroid patients, compared to the controls. Functional MRI studies (fMRI) were carried out in five hypo and five hyperthyroid patients and six healthy volunteers. Whole brain imaging was performed using echo planar imaging (EPI) technique, on a 1.5T whole body MR system (Siemens Magnetom Vision). The task paradigm consisted of 8 cycles of active and reference phases of 6 measurements each, with right index finger tapping at a rate of 120 taps/min. Post-processing was performed using statistical parametric mapping on a voxel-by-voxel basis using SPM99. Clusters of activation were found in the contralateral hemisphere in primary somatomotor area (M1), supplementary motor area (SMA), somatosensory, auditory receptive and integration areas, inferior temporal lobe, thalamus and cerebellum. Increased clusters of activation were observed in M1 in thyroid subjects as compared to controls and with bilateral activation of the primary motor cortex in two hyperthyroid patients. The results are explained in terms of increased functional demands in thyroid patients compared to volunteers for the execution of the same task.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.