• Lutz Nover

      Articles written in Journal of Biosciences

    • Heat induced stress proteins and the concept of molecular chaperones

      Christoph Forreiter Lutz Nover

      More Details Abstract Fulltext PDF

      Heat stress proteins can be assigned to eleven protein families conserved among bacteria, plants and animals. Most of them aid other proteins to maintain or regain their native conformation by stabilizing partially unfolded states. Hence, they are called molecular chaperones. Experimental data indicate that many of them form heterooligomeric complexes, so-called chaperone machines, interacting with each other to generate a network for maturation, assembly and intracellular targeting of proteins. In this review we summarize the essential information on the structure and function of chaperone and chaperone complexes. In addition we present a compilation ofin vivo andin vivo test systems used in the preceding ten years of chaperone research.

    • Heat stress response and heat stress transcription factors

      Klaus-Dieter Scharf Ingo Höhfeld Lutz Nover

      More Details Abstract Fulltext PDF

      Expression of heat shock protein (HSP)-coding genes is controlled by heat stress transcription factors (Hsfs). They are structurally and functionally conserved throughout the eukaryotic kingdom. In addition to the DNA-binding domain with the helix-turn-helix motif essential for DNA recognition, three functional parts in the C-terminal activator domain were characterized: (i) the HR-A/B region is responsible for oligomerization and activity control, (ii) the nuclear localizing signal (NLS) formed by a cluster of basic amino acid residues which is required and sufficient for nuclear import and (iii) short C-terminal peptide motifs with a central Trp residue (AHA elements). These three parts are indispensible for the activator function. A peculiaritiy of plants is the heat shock-inducible new synthesis of Hsfs. In tomato HsfA1 is constitutively expressed, whereas Hsfs A2 and B1 are heat shock-inducible proteins themselves. We used Hsf knock-out strains of yeast and transient reporter assays in tobacco protoplasts for functional analysis of Hsf-coding cDNA clones and mutants derived from them. HsfA2, which in tomato cell cultures is expressed only after heat shock induction, tends to form large cytoplasmic aggregates together with other HSPs (heat stress granules). In the transient expression assay its relatively low activator potential is evidently due to the inefficient nuclear import. However, the intramolecular shielding of the NLS can be released either by deletion of a short C-terminal fragment or by coexpression with HsfA1, which forms hetero-oligomers with HsfA2.

    • Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors

      Sanjeev Kumar Baniwal Kapil Bharti Kwan Yu Chan Markus Fauth Arnab Ganguli Sachin Kotak Shravan Kumar Mishra Lutz Nover Markus Port Klaus-Dieter Scharf Joanna Tripp Christian Weber Dirk Zielinski Pascal von Koskull-DÖring

      More Details Abstract Fulltext PDF

      Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the “working horse” of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.