Long-Sen Chang
Articles written in Journal of Biosciences
Volume 34 Issue 2 June 2009 pp 203-211 Articles
Functional role of EF-hands 3 and 4 in membrane-binding of KChIP1
Yan-Shun Liao Ku-Chung Chen Long-Sen Chang
The aim of the present study is to explore whether membrane targeting of K+ channel-interacting protein 1 (KChIP1) is associated with its EF-hand motifs and varies with specific phospholipids. Truncated KChIP1, in which the EF-hands 3 and 4 were deleted, retained the 𝛼-helix structure, indicating that the N-terminal half of KChIP1 could fold appropriately. Compared with wild-type KChIP1, truncated KChIP1 exhibited lower lipid-binding capability. Compared with wild-type KChIP1, increasing membrane permeability by the use of digitonin caused a marked loss of truncated KChIP1, suggesting that intact EF-hands 3 and 4 were crucial for the anchorage of KChIP1 on membrane. KChIP1 showed a higher binding capability with phosphatidylserine (PS) than truncated KChIP1. Unlike that of truncated KChIP1, the binding of wild-type KChIP1 with membrane was enhanced by increasing the PS content. Moreover, the binding of KChIP1 with phospholipid vesicles induced a change in the structure of KChIP1 in the presence of PS. Taken together, our data suggest that EF-hands 3 and 4 of KChIP1 are functionally involved in a specific association with PS on the membrane.
Volume 35 Issue 4 December 2010 pp 583-593 Articles
Pei-Hsiu Kao Yi-Ling Chiou Shinne-Ren Lin Long-Sen Chang
To elucidate the contribution of phospholipase A2 (PLA2) activity of notexin to its ability to perturb membranes, comparative studies on the interaction of notexin and guanidinated notexin (Gu-notexin) with egg yolk phosphatidylcholine (EYPC), EYPC/egg yolk sphingomyelin (EYSM) and EYPC/EYSM/cholesterol vesicles were conducted. EYSM notably reduced the membrane-damaging activity of notexin against EYPC vesicles, but had an insignificant influence on that of Gu-notexin. Unlike the effects noted with notexin, inactivation of PLA2 activity by EDTA led to a reduction in the ability of Gu-notexin to induce EYPC/EYSM vesicle leakage and to increase Gu-notexin-induced membrane permeability of EYPC/EYSM/cholesterol vesicles. The geometrical arrangement of notexin and Gu-notexin in contact with either EYPC/EYSM vesicles or EYPC/EYSM/cholesterol vesicles differed. Moreover, global conformation of notexin and Gu-notexin differed in either Ca2+-bound or metal-free states. These results indicate that notexin and Gu-notexin could induce membrane permeability without the involvement of PLA2 activity, and suggest that guanidination alters the membrane-bound mode of notexin on damaging phospholipid vesicles containing sphingomyelin and cholesterol.
Volume 37 Issue 2 June 2012 pp 277-287 Articles
Yi-Ling Chiou Shinne-Ren Lin Wan-Ping Hu Long-Sen Chang
The goal of the present study is to elucidate the mechanism of quercetin on modulating
Volume 48, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.