• John R Carlson

      Articles written in Journal of Biosciences

    • Molecular determinants of odorant receptor function in insects

      Anandasankar Ray Wynand Van Der Goes Van Naters John R Carlson

      More Details Abstract Fulltext PDF

      The olfactory system of Drosophila melanogaster provides a powerful model to study molecular and cellular mechanisms underlying function of a sensory system. In the 1970s Siddiqi and colleagues pioneered the application of genetics to olfactory research and isolated several mutant Drosophila with odorant-specific defects in olfactory behaviour, suggesting that odorants are detected differentially by the olfactory system. Since then basic principles of olfactory system function and development have emerged using Drosophila as a model. Nearly four decades later we can add computational methods to further our understanding of how specific odorants are detected by receptors. Using a comparative approach we identify two categories of short amino acid sequence motifs: ones that are conserved family-wide predominantly in the C-terminal half of most receptors, and ones that are present in receptors that detect a specific odorant, 4-methylphenol, found predominantly in the N-terminal half. The odorant-specific sequence motifs are predictors of phenol detection in Anopheles gambiae and other insects, suggesting they are likely to participate in odorant binding. Conversely, the family-wide motifs are expected to participate in shared functions across all receptors and a mutation in the most conserved motif leads to a reduction in odor response. These findings lay a foundation for investigating functional domains within odorant receptors that can lead to a molecular understanding of odor detection.

    • A map of taste neuron projections in the Drosophila CNS

      Jae Young Kwon Anupama Dahanukar Linnea A Weiss John R Carlson

      More Details Abstract Fulltext PDF

      We provide a map of the projections of taste neurons in the CNS of Drosophila. Using a collection of 67 GAL4 drivers representing the entire repertoire of Gr taste receptors, we systematically map the projections of neurons expressing these drivers in the thoracico-abdominal ganglion and the suboesophageal ganglion (SOG). We define 9 categories of projections in the thoracico-abdominal ganglia and 10 categories in the SOG. The projection patterns are modular, and can be interpreted as combinations of discrete pattern elements. The elements can be interpreted in terms of the taste organ from which the projections originate, the structures from which they originate, and the quality of taste information that they represent. The extensive diversity in projection patterns provides an anatomical basis for functional diversity in responses elicited by different taste stimuli.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.