• Jing Yan

      Articles written in Journal of Biosciences

    • Effect of LNA- and OMeN-modified oligonucleotide probes on the stability and discrimination of mismatched base pairs of duplexes

      Ying Yan Jing Yan Xianyu Piao Tianbiao Zhang Yifu Guan

      More Details Abstract Fulltext PDF

      Locked nucleic acid (LNA) and 2′-𝑂-methyl nucleotide (OMeN) are the most extensively studied nucleotide analogues. Although both LNA and OMeN are characterized by the C3′-endo sugar pucker conformation, which is dominant in A-form DNA and RNA nucleotides, they demonstrate different binding behaviours. Previous studies have focused attention on their properties of duplex stabilities, hybridization kinetics and resistance against nuclease digestion; however, their ability to discriminate mismatched hybridizations has been explored much less. In this study, LNA- and OMeN-modified oligonucleotide probes have been prepared and their effects on the DNA duplex stability have been examined: LNA modifications can enhance the duplex stability, whereas OMeN modifications reduce the duplex stability. Next, we studied how the LNA:DNA and OMeN:DNA mismatches reduced the duplex stability. Melting temperature measurement showed that different LNA:DNA or OMeN:DNA mismatches indeed influence the duplex stability differently. LNA purines can discriminate LNA:DNA mismatches more effectively than LNA pyrimidines as well as DNA nucleotides. Furthermore, we designed five LNA- and five OMeN-modified oligonucleotide probes to simulate realistic situations where target–probe duplexes contain a complementary LNA:DNA or OMeN:DNA base pairs and a DNA:DNA mismatch simultaneously. The measured collective effect showed that the duplex stability was enhanced by the complementary LNA:DNA base pair but decreased by the DNA:DNA mismatch in a position-dependent manner regardless of the chemical identity and position of the complementary LNA:DNA base pair. On the other hand, the OMeN-modified probes also showed that the duplex stability was reduced by both the OMeN modification and the OMeN:DNA mismatch in a position-dependent manner.

    • LNA-modified isothermal oligonucleotide microarray for differentiating bacilli of similar origin

      Jing Yan Ying Yuan Runqing Mu Hong Shang Yifu Guan

      More Details Abstract Fulltext PDF

      Oligonucleotide microarray has been one of the most powerful tools in the ‘Post-Genome Era’ for its high sensitivity, high throughput and parallel processing capability. To achieve high detection specificity, we fabricated an isothermal microarray using locked nucleic acid (LNA)-modified oligonucleotide probes, since LNA has demonstrated the advanced ability to enhance the binding affinity toward their complementary nucleotides. After designing the nucleotide sequences of these oligonucleotide probes for gram-positive bacilli of similar origin (Bacillus subtilis, Bacillus licheniformis, Bacillus pumilus, Bacillus megaterium and Bacillus circulans), we unified the melting temperatures of these oligonucleotide probes by modifying some nucleotides using LNA. Furthermore, we optimized the experimental procedures of hydrating microarray slides, blocking side surface as well as labelling the PCR products. Experimental results revealed that KOD Dash DNA polymerase could efficiently incorporate Cy3-dCTP into the PCR products, and the LNA-isothermal oligonucleotide microarray were able to distinguish the bacilli of similar origin with a high degree of accuracy and specificity under the optimized experimental condition.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.