Articles written in Journal of Biosciences

    • Long non-coding RNA CASC2 targeting miR-18a suppresses glioblastoma cell growth, metastasis and EMT in vitro and in vivo


      More Details Abstract Fulltext PDF

      Long non-coding RNAs (lncRNAs) cancer susceptibility candidate 2 (CASC2) has been characterized as atumor suppressor in glioma. Although CASC2 may predict the prognosis of glioma patients, the role andmechanism of CASC2 in human glioblastoma remain to be fully illuminated. Expression of CASC2 and miR-18a was detected using RT-qPCR. Cell growth was evaluated by MTT assay, colony formation assay, and flowcytometry; metastasis and epithelial-mesenchymal transition (EMT) were determined with transwell assay andWestern blot, respectively. The target binding between CASC2 and miR-18a was predicted on Starbasesoftware, and confirmed by luciferase reporter assay and RNA immunoprecipitation. Xenograft experimentmeasured tumor growth. As a result, CASC2 was downregulated and miR-18a was upregulated in glioblastomatumor tissues and cells (T98 and A172). Overexpression of CASC2 promoted apoptosis rate and E-cadherinexpression, but suppressed cell viability, colony-forming ability, migration, invasion, and expression ofN-cadherin and Vimentin in T98 and A172 cells, accompanied with tumor growth inhibition in vivo; whereas,silencing of CASC2 exerted the opposite effect on cell growth, metastasis and EMT of T98 and A172 cellsin vitro. However, reintroduction of miR-18a could reverse CASC2 upregulation-mediated suppression onabove cell behaviors in vitro. More importantly, miR-18a was a downstream target for CASC2, and wasnegatively regulated by CASC2. Collectively, this study demonstrated that CASC2 served as tumor suppressorin glioblastoma by inhibiting cell growth, metastasis and EMT both in vitro and in vivo partially via CASC2-miR-18a axis.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.