• Guojie Zhao

      Articles written in Journal of Biosciences

    • Identification of a premature termination of DNA polymerization in vitro by Klenow fragment mutants

      Guojie Zhao Hua Wei Yifu Guan

      More Details Abstract Fulltext PDF

      DNA polymerization products by Klenow fragment (KF) are blunt-ended. In the present study, we found that the Klenow fragment mutants with partial deletions of thumb subdomain were unable to extend primers to the 5′ terminal of templates, thus creating 5′ overhanging sticky ends 2 nt long. We termed this phenomenon as PmTP (premature termination of polymerization). The KF mutants produced homogenous sticky-ended products only under mild reaction conditions, whereas under vigorous reaction conditions, the sticky ends were prone to be blunt-ended. It was also identified that deletions of more than four residues of KF thumb subdomain could induce PmTP, and two-residue deletion of KF thumb subdomain only induced PmTP in a lower-concentration situation. Structure modelling analysis suggested that shortening or destruction of 𝛼 helix H1 at the tip of the thumb subdomain was crucial to PmTP, while the conserved residues in front of 𝛼 helix was less important. PmTP might be caused by the reduced DNA-binding affinity of the mutants. The sticky ends made by PmTP have potential applications in gene splicing and molecular cloning techniques.

    • Realizing directional cloning using sticky ends produced by 3ʹ-5ʹ exonuclease of Klenow fragment

      Guojie Zhao Jun Li Tianyu Hu Hua Wei Yifu Guan

      More Details Abstract Fulltext PDF

      The Klenow fragment (KF) has been used to make the blunt end as a tool enzyme. Its 5′-3′ polymerase activity can extend the 5′ overhanging sticky end to the blunt end, and 3′-5′ exonuclease activity can cleave the 3′ overhanging sticky end to the blunt end. The blunt end is useful for cloning. Here, we for the first time determined that a sticky end can be made by using the 3′-5′ exonuclease activity of KF. We found that KF can cleave the blunt end into certain sticky ends under controlled conditions. We optimized enzyme cleavage conditions, and characterized the cleaved sticky ends to be mainly 2 nt 5′ overhang. By using these sticky ends, we realized ligation reaction in vitro, and accomplished cloning short oligonucleotides directionally with high cloning efficiency. In some cases, this method can provide sticky end fragments in large scale for subsequent convenient cloning at low cost.

    • 2ʹ-O-methyl nucleotide modified DNA substrates influence the cleavage efficiencies of BamHI and BglII

      Zhaoxue Tong Bin Zhao Guojie Zhao Hong Shang Yifu Guan

      More Details Abstract Fulltext PDF

      Induction of endonucleolytic DNA cleavage is an essential event that links the initiating stimuli to the final effects of cells. The cleavage efficiency and thus the final yield could be affected by many factors, including structures of DNA substrates, composite structures of enzymes–substrates or enzymes–nucleic analogs and so on. However, it is not clear whether a nucleotide derivative-substituted in DNA substrates can influence the efficiency of enzymatic cleavage. To investigate the effect of sugar pucker conformation on DNA–protein interactions, we used 2′-𝑂-methyl modified nucleotides (OMeN) to modify DNA substrates of isocaudemers BamHI and BglII in this study, and used FRET assay as an efficient method for analysis of enzyme cleavage. Experimental results demonstrated that OMeN-substituted recognition sequences influenced the cleavage rates significantly in a position-dependent manner. OMeN substitutions can reduce the cleavage as expected. Surprisingly, OMeN substitutions can also enhance the cleavage rates. The kinetics parameters of 𝑉max and 𝐾m have been obtained by fitting the Michaelis-Menten kinetic equation. These 2′-OMe nucleotides could behave as a regulatory element to modulate the enzymatic activity in vitro, and this property could enrich our understanding about the endonuclease cleavage mechanism and enhance our ability to regulate the enzymatic cleavage efficiency for applications in synthetic biology.

  • Journal of Biosciences | News

      Forthcoming Special issue.

    • To trigger further research on plant mitochondria, the Journal of Biosciences is bringing out a special issue titled "Plant Mitochondria: Properties and Interactions with Other Organelles".

      Plant mitochondria are quite distinct and have unique features, such as a cyanide-insensitive alternate pathway. They also interact with chloroplasts to optimize photosynthetic carbon assimilation.

      Submissions are welcome until 30 July 2023. The contributions can be original articles, short communications, reviews, or mini-reviews on any topic related to plant mitochondria.

      Authors can submit their articles online at https://www.editorialmanager.com/jbsc/default2.aspx

      Posted on April 12, 2023
    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2022-2023 Indian Academy of Sciences, Bengaluru.