G Nagesh Babu
Articles written in Journal of Biosciences
Volume 3 Issue 4 December 1981 pp 463-468
The present experiments were carried out to further elucidate the mechanism by which dopamine mediates the actions of Y-aminobutyric acid on prolactin release from anterior pituitary following its intraventricular injection in overiectomized conscious rats, Y-Aminobutyric acid significantly suppressed the prolactin levels at 0.1 Μmol concentration while at 4 Μmol dose, the level was elevated. The activity of tyrosine hydroxylase was increased significantly in the anterior pituitary at the lower dose while the higher concentration of Y-aminobutyric acid did not bring about any change in the activity both in the hypothalamus and the anterior pituitary. The results presented suggest that intracellular dopamine in the anterior pituitary may directly inhibit prolactin release; the plasma prolactin level is elevated by Y-aminobutyric acid, by way of either inhibiting dopaminergic tone or possible stimulation of a physiological prolactin releasin g hormone.
Volume 5 Issue 2 June 1983 pp 139-145
Plasma gonadotropin, prolactin levels and hypothalamic tyrosine hydroxylase activity were evaluated at 0900, 1200 and 1700 h during diestrus, proestrus and estrus, ovariectomized and after systemic administration of reserpine or α-methyl p-tyrosine, which interfere with catecholamine biosynthesis, in rats. Gonadotropin and prolactin levels showed peak values during the afternoon of proestrus, while hypothalamic tyrosine hydroxylase activity was markedly lowered at 1200 on proestrus. Gonadotropin levels were slightly lowered whereas prolactin concentrations and hypothalamic tyrosine hydroxylase activity were significantly increased by reserpine. Depletion of hypothalamic dopamine by reserpine apparently resulted in significant elevation of prolactin levels which inturn induce tyrosine hydroxylase. Gonadotropin levels and hypothalamic tyrosine hydroxylase activity were significantly suppressed after the administration of α-methyl p-tyrosine. Prolactin levels, however, were elevated significantly. These results indicate that catecholamines are involved in the control of gonadotropin and prolactin release during estrous cycle and inhibition of catecholamines biosynthesis by α-methyl p-tyrosine could result in suppression of gonadotropin levels, whereas removal of tonic inhibition of hypothalamic dopamine by α-methyl-p-tyrosine elevate prolactin levels.
Volume 48, 2023
All articles
Continuous Article Publishing mode
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.