• David L Beveridge

      Articles written in Journal of Biosciences

    • The ABCs of molecular dynamics simulations on B-DNA, circa 2012

      David L Beveridge Thomas E Cheatham III Mihaly Mezei

      More Details Abstract Fulltext PDF

      This article provides a retrospective on the ABC initiative in the area of all-atom molecular dynamics (MD) simulations including explicit solvent on all tetranucleotide steps of duplex B-form DNA duplex, ca. 2012. The ABC consortium has completed two phases of simulations, the most current being a set of 50–100 trajectories based on the AMBER ff99 force field together with the parmbsc0 modification. Some general perspectives on the field of MD on DNA and sequence effects on DNA structure are provided, followed by an overview our MD results, including a detailed comparison of the ff99/parmbsc0 results with crystal and NMR structures available for d(CGCGAATTCGCG). Some projects inspired by or related to the ABC initiative and database are also reviewed, including methods for the trajectory analyses, informatics of dealing with the large database of results, compressions of trajectories for efficacy of distribution, DNA solvation by water and ions, parameterization of coarse-grained models with applications and gene finding and genome annotation

    • Studies of base pair sequence effects on DNA solvation based on all-atom molecular dynamics simulations

      Surjit B Dixit Mihaly Mezei David L Beveridge

      More Details Abstract Fulltext PDF

      Detailed analyses of the sequence-dependent solvation and ion atmosphere of DNA are presented based on molecular dynamics (MD) simulations on all the 136 unique tetranucleotide steps obtained by the ABC consortium using the AMBER suite of programs. Significant sequence effects on solvation and ion localization were observed in these simulations. The results were compared to essentially all known experimental data on the subject. Proximity analysis was employed to highlight the sequence dependent differences in solvation and ion localization properties in the grooves of DNA. Comparison of the MD-calculated DNA structure with canonical A- and B-forms supports the idea that the G/C-rich sequences are closer to canonical A- than B-form structures, while the reverse is true for the poly A sequences, with the exception of the alternating ATAT sequence. Analysis of hydration density maps reveals that the flexibility of solute molecule has a significant effect on the nature of observed hydration. Energetic analysis of solute–solvent interactions based on proximity analysis of solvent reveals that the GC or CG base pairs interactmore strongly with watermolecules in the minor groove of DNA that the AT or TA base pairs, while the interactions of the AT or TA pairs in the major groove are stronger than those of the GC or CG pairs. Computation of solvent-accessible surface area of the nucleotide units in the simulated trajectories reveals that the similarity with results derived from analysis of a database of crystallographic structures is excellent. The MD trajectories tend to follow Manning’s counterion condensation theory, presenting a region of condensed counterions within a radius of about 17 Å from the DNA surface independent of sequence. The GC and CG pairs tend to associate with cations in the major groove of the DNA structure to a greater extent than the AT and TA pairs. Cation association is more frequent in the minor groove of AT than the GC pairs. In general, the observed water and ion atmosphere around the DNA sequences is the MD simulation is in good agreement with experimental observations.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.