• Brandon Tenay

      Articles written in Journal of Biosciences

    • Vps1 in the late endosome-to-vacuole traffic

      Jacob Hayden Michelle Williams Ann Granich Hyoeun Ahn Brandon Tenay Joshua Lukehart Chad Highfill Sarah Dobard Kyoungtae Kim

      More Details Abstract Fulltext PDF

      Vacuolar protein sorting 1 (Vps1), the yeast homolog to human dynamin, is a GTP hydrolyzing protein, which plays an important role in protein sorting and targeting between the Golgi and late endosomal compartments. In this study, we assessed the functional significance of Vps1 in the membrane traffic towards the vacuole. We show here that vps1𝛥 cells accumulated FM4-64 to a greater extent than wild-type (WT) cells, suggesting slower endocytic degradation traffic toward the vacuole. In addition, we observed that two endosome-to-vacuole traffic markers, DsRed-FYVE and Ste2-GFP, were highly accumulated in Vps1-deficient cells, further supporting Vps1’s implication in efficient trafficking of endocytosed materials to the vacuole. Noteworthy, a simultaneous imaging analysis in conjunction with FM4-64 pulse-chase experiment further revealed that Vps1 plays a role in late endosome to the vacuole transport. Consistently, our subcellular localization analysis showed that Vps1 is present at the late endosome. The hyperaccumulation of endosomal intermediates in the vps1 mutant cells appears to be caused by the disruption of integrity of HOPS tethering complexes, manifested by mislocalization of Vps39 to the cytoplasm. Finally, we postulate that Vps1 functions together with the Endosomal Sorting Complex Required for Transport (ESCRT) complex at the late endosomal compartments, based on the observation that the double mutants, in which VPS1 along with singular ESCRT I, II and III genes have been disrupted, exhibited synthetic lethality. Together, we propose that Vps1 is required for correct and efficient trafficking from the late endosomal compartments to the vacuole.

    • Inactivation of Tor proteins affects the dynamics of endocytic proteins in early stage of endocytosis

      Brandon Tenay Evin Kimberlin Michelle Williams Juliette Denise Joshua Fakilahyel Kyoungtae Kim

      More Details Abstract Fulltext PDF

      Tor2 is an activator of the Rom2/Rho1 pathway that regulates 𝛼-factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of 𝛼-factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1𝛥tor2ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1𝛥tor2ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2ts and tor1𝛥tor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.

    • TORC2 and eisosomes are spatially interdependent, requiring optimal level of phosphatidylinositol 4, 5-bisphosphate for their integrity

      Katelyn Bartlett Shiva Kumar Gaud Gadila Brandon Tenay Hyoeun McDermott Brett Alcox Kyoungtae Kim

      More Details Abstract Fulltext PDF

      The elucidation of the organization and maintenance of the plasma membrane has been sought due to its numerous roles in cellular function. In the budding yeast Saccharomyces cerevisiae, a novel paradigm has begun to emerge in the understanding of the distribution of plasma membrane microdomains and how they are regulated. We aimed to investigate the dynamic interdependence between the protein complexes eisosome and TORC2, representing micro-domains MCC and MCT, respectively. In this study, we reveal that the eisosome organizer Pil1 colocalizes with the MCT marker Avo2. Furthermore, we provide evidence that the formation of MCT is dependent on both eisosome integrity and adequate levels of the plasma membrane phosphoinositide PI(4,5)P2. Taken together, our findings indicate that TORC2, eisosomes, and PI(4,5)P2 exist in an interconnected relationship, which supports the emerging model of the plasma membrane.

  • Journal of Biosciences | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.