• Yin Yansheng

      Articles written in Bulletin of Materials Science

    • Diffusivity of Al and Fe near the diffusion bonding interface of Fe3Al with low carbon steel

      Li Yajiang Wang Juan Yin Yansheng Ma Haijun

      More Details Abstract Fulltext PDF

      The distribution of elements near the Fe3Al/Q235 diffusion bonding interface was computed by the diffusion equation as well as measured by means of EPMA. The results indicated close agreement between the two for iron and aluminium. Diffusion coefficient in the interface transition zone is larger than that in the Fe3Al and Q235 steel at the same temperature, which is favourable to elemental diffusion. The diffusion distance near the Fe3Al/Q235 interface increased with increasing heating temperature, 𝑇, and the holding time, 𝑡. The relation between the width of the interface transition zone, 𝑥, and the holding time, 𝑡, conformed to parabolic growth law: 𝑥2 = 4.8 × 104 exp(– 133/RT) (𝑡 – 𝑡0). The width of the interface transition zone does not increase significantly for holding times beyond 60 min.

    • Microstructural characterization in diffusion bonded TiC–Al2O3/Cr18–Ni8 joint with Ti interlayer

      Wang Juan Li Yajiang Yin Yansheng

      More Details Abstract Fulltext PDF

      Ceramic matrix composite, TiC–Al2O3, and stainless steel, Cr18–Ni8, were joined at 1400 K by solid state diffusion bonding, making use of a Ti foil acting as thermal stress relief interlayer. The microstructure of the joint was thus formed. The diffusion bonded TiC–Al2O3/Cr18–Ni8 joint was investigated by a variety of characterization techniques such as scanning electron microscope (SEM) with energy dispersion spectroscopy (EDS) and X-ray diffraction (XRD). The results indicate that Ti foil is fully fused to react with elements from substrates and Ti3Al, TiC and 𝛼-Ti are formed in the diffusion bonded TiC–Al2O3/Cr18–Ni8 joint. The interfacial shear strength is up to 99 MPa and the shear fracture occurs close to the ceramic matrix composite due to the application of Ti foil acting as thermal stress relief interlayer.

© 2017-2019 Indian Academy of Sciences, Bengaluru.