• Weixiong You

      Articles written in Bulletin of Materials Science

    • Yb3+ and Er3+ co-doped Y2Ce2O7 nanoparticles: synthesis and spectroscopic properties

      Honghui Jiang Weixiong You Xiaolin Liu Jinsheng Liao Ping Wang Bin Yang

      More Details Abstract Fulltext PDF

      Yb3+ and Er3+ co-doped Y2Ce2O7 nanoparticles sintered at different temperatures were prepared by homogeneous co-precipitation method. The products were characterized by X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the particle sizes and morphologies of the samples were heavily influenced by the sintering temperature. As temperature increased, the particle sizes became gradually larger and more agglomerate. The emissions including green and red upconversion emissions were investigated under 980 nm excitation. The emission intensities of the samples also depended on the sintering temperature. Two photon processes were mainly responsible for green and red upconversion emissions.

    • Microwave hydrothermal synthesis and upconversion luminescence properties of Yb$^{3+}$/Tm$^{3+}$ co-doped NaY(MoO$_4$)$_2$ phosphor

      RONG HUANG QI WANG JINSHENG LIAO WEIXIONG YOU

      More Details Abstract Fulltext PDF

      Tetragonal NaY(MoO$_4$)$_2$ (NYM) phosphors co-doped with Yb$^{3+}$ and Tm$^{3+}$ ions were synthesized throughmicrowave hydrothermal method followed by calcining treatment. Powder X-ray diffraction, Fourier transform infraredspectroscopy, scanning electron microscopy and photoluminescence spectra were used to characterize the properties of as prepared samples. The results show that Yb$^{3+}$/Tm$^{3+}$ co-doped NYM displayed bright blue emission near 472 and 476 nm(${}^1$G$_4$ $\to$ ${}^3$H$_6$ transition), strong near-infrared upconversion (UC) emission around 795 nm (${}^3$H)$_4$ $\to$ ${}^3$H$_6$ transition). The optimum doping concentrations of Yb$^{3+}$ and Tm$^{3+}$ for the most intense UC luminescence were obtained, and the related UC mechanism of Yb$^{3+}$/Tm$^{3+}$ co-doped NYM depending on pump power was studied in detail.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.