Wei Gao
Articles written in Bulletin of Materials Science
Volume 34 Issue 4 July 2011 pp 755-758
Nonionic emulsion-mediated synthesis of zeolite beta
Yuguo Shen Ying Zhang Chao Jin Ying Cao Wei Gao Lishan Cui
Zeolite beta synthesis was first carried out in a newly developed emulsion system containing nonionic polyoxyethylated alkylphenol surfactant, which showed interesting non-conventional features. Compared to the conventional hydrothermal synthesis of zeolite beta, the reported nonionic emulsion system showed a faster nucleation rate. Furthermore, the emulsion system could stabilize the beta product and retarded its further transformation to ZSM-5 even under the high crystallization temperature at 453 K. Additionally, the beta particle size could be tuned by the adoption of different lengths of alkyl chain in the surfactant and cosurfactant. Control experiments showed each emulsion component played a crucial role in the zeolite beta growth. The approach proposed in this paper might be extended to apply for the syntheses of other types of zeolites with particle size under control.
Volume 43 All articles Published: 20 May 2020 Article ID 0127
A DFT investigation of performance of metal-doped nanotubes as acceptable catalysts to SiO oxidation
WEI GAO LI YAN YINGFANG LI MEYSAM NAJAFI
The Fe-doped nanotubes can be considered as novel catalysts to SiO oxidation. The information of SiO oxidation on nano-catalysts is not clear. In this study, the SiO oxidation on Fe-carbon nanotube (CNT) and Fe-boron nitride nanotube (BNNT) is examined through Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) paths. The SiO joins in the Fe atom of Fe-surface-O$_2$$^*$ and Fe-surface-O$^*$ to create important structures with minor barrier energy. Cis-Fe-surface-OSiOO$^*$ in the ER is more stable than structures in LH pathway. In the LH and ER mechanisms the one and two SiO$_2$ are released at normal temperature, respectively. The abilities of Fe-CNT and Fe-BNNT to oxidation of SiO is investigated, and Fe-CNT and Fe-BNNT as novel metal-doped catalysts are proposed.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.