• WEI QIU

      Articles written in Bulletin of Materials Science

    • Effects of Zn doping concentration on resistive switching characteristics in Ag/La$_{1−x}Zn$_x$MnO$_3$/p$^+$-Si devices

      SHUAISHUAI YAN HUA WANG JIWEN XU LING YANG WEI QIU QISONG CHEN DONG HAN

      More Details Abstract Fulltext PDF

      Ag/La$_{1−x}$Zn$_x$MnO$_3$/p$^+$-Si devices with different Zn doping contents were fabricated through sol–gel method. The effects of Zn doping concentration on the microstructure of La$_{1−x}$Zn$_x$MnO$_3$ films, as well as on the resistance switching behaviour and endurance characteristics of Ag/La$_{1−x}$Zn$_x$MnO$_3$/p$^{+}$-Si were investigated. After annealing at 600$^{\circ}$C for 1~h, the La$_{1−x}$Zn$_x$MnO$_3$ ($x = 0.1$, 0.2, 0.3, 0.4, 0.5) are amorphous and have bipolar resistance characteristics, with RHRS/RLRS ratios $>$103. However, the endurance characteristics show considerable differences; $x = 0.3$ shows the best endurance characteristics in more than 1000 switching cycles. The conduction mechanism of the Ag/La$_{1−x}$Zn$_x$MnO$_3$/p$^{+}$-Si is the Schottky emission mode at high resistance state. However, the conduction mechanism at low resistance state varies with Zn doping concentration. The dominant mechanism at $x = 0.1$ is filamentary conduction mechanism, whereas that at $x \ge 0.2$ is space-charge-limited current conduction.

    • Effects of Er$^{3+}$ doping on the structure and electro-optical properties of 0.94(K$_{0.5}$Na$_{0.5}$)NbO$_3$–0.06Sr(Zn$_{1/3}$Nb$_{2/3}$)O$_3$ ceramics

      JIANGTING WANG YABING SUN SHAOYANG SHI HUA WANG JIWEN XU LING YANG WEI QIU

      More Details Abstract Fulltext PDF

      The traditional solid-phase reaction method was used to dope the 0.94(k$_{0.5}$Na$_{0.5}$)NbO$_3$–0.06Sr(Zn$_{1/3}$Nb$_{2/3}$)O$_3$ (0.94KNN–0.06SZN) with rare-earth Er$^{3+}$, showing that the transparent ferroelectric ceramics have both up-conversion luminescence. Also the changes in the phase structure, optoelectronic properties of the ceramics after Er$^{3+}$ doping were investigated. The results show that the doping of Er$^{3+}$ has no significant effect on the phase structure, dielectric constant, coercivity field and residual polarization intensity of the ceramics. With the increase of Er$^{3+}$ content, the saturation polarization intensity shows a trend of decreasing and then increasing, and the dielectric constant first decreases and then stabilizes. The large amount of Er$^{3+}$ also greatly reduced the light transmission of the ceramics. In addition, the doping of Er$^{3+}$ gives the ceramics new properties. Under 980 nm laser excitation, the ceramics exhibit luminescent emission bands at 533, 554 nm (green) and 672 nm (red). The luminous intensity of the ceramic first strengthens with the increase of Er$^{3+}$ content and then weakens, and the strongest luminous intensity is obtained when the Er$^{3+}$ content is 1.00% mol. Transparent ferroelectric ceramics with light-emitting functions will have a broad application prospect in the field of photoelectric crossover.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2021-2022 Indian Academy of Sciences, Bengaluru.