Vijayanand Havanoor
Articles written in Bulletin of Materials Science
Volume 28 Issue 5 August 2005 pp 477-481 Thin Films
Synthesis of MoO3 and its polyvinyl alcohol nanostructured film
Arunkumar Lagashetty Vijayanand Havanoor S Basavaraja A Venkataraman
The synthesis of ultrafine MoO3 through a self-propagating combustion route employing polyethylene glycol as fuel is reported. The precursor molybdenum oxalate is employed in this study for the conversion of the precursor to ultrafine MoO3 particles. The solvent casting method is adopted for the synthesis of MoO3 dispersed polyvinyl alcohol nanostructured film (MoO3–PVA). These synthesized MoO3 and their composite samples are characterized for their structure, morphology, bonding and thermal behaviour by XRD, SEM, IR and DSC techniques, respectively. The distribution of MoO3 in polyvinyl alcohol gives a crystalline polymer, a compact structure and an increase in glass transition temperature.
Volume 34 Issue 7 December 2011 pp 1319-1323
P M Prithviraj Swamy S Basavaraja Vijayanand Havanoor N V Srinivas Rao R Nijagunappa A Venkataraman
The barium ferrite particles were prepared using a self-propagating low-temperature combustion method using polyethylene glycol (PEG) as a fuel. The process was investigated with simultaneous thermogravimetric-differential thermal analysis (TG–DTA). The crystalline structure, morphology and the magnetic properties of the barium ferrite particles were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and SQUID susceptometer. The results show that the ignition temperature of PEG is lower compared with other combustion methods and gives nanocrystalline barium ferrite.
Volume 45, 2022
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.