• Varughese John

      Articles written in Bulletin of Materials Science

    • Lanthanum samarium oxalate — its growth and structural characterization

      Varughese John M A Ittyachen K S Raju

      More Details Abstract Fulltext PDF

      Lanthanum samarium oxalate (LSO) single crystals are grown in silica gels by the diffusion of a mixture of aqueous solutions of lanthanum nitrate and samarium nitrate into the test tube having the set gel impregnated with oxalic acid. Tabular crystals of LSO having well defined hexagonal basal planes are observed at different depths inside the gel. LSO crystals grown by this method are colourless and transparent. Laue transmission X-ray diffraction pattern of LSO reveals well defined spots with two-fold symmetry along the horizontal axis. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) support that LSO loses water around 120°C, and CO and CO2 around 350–450°C. The infrared (IR) absorption spectrum of LSO establishes the presence of oxalate (C2 O4)2− ions. Energy dispersive X-ray analysis (EDAX) confirms the presence of La and Sm in the sample. X-ray photoelectron spectroscopic (XPS) studies of LSO confirm the presence of La and Sm in their respective oxide states. An empirical structure for LSO has been proposed on the basis of these findings.

    • Growth and physico chemical characterization of lanthanum neodymium oxalate single crystals

      K S Raju Varughese John M A Ittyachen

      More Details Abstract Fulltext PDF

      Single crystals of lanthanum neodymium oxalate (LNO) are grown in sodium meta silicate gels, by the diffusion of a mixture of aqueous solutions of lanthanum nitrate and neodymium nitrate into the test tube having the set gel containing oxalic acid. The bluish pink coloured tabular crystals of LNO having well defined hexagonal basal planes appear either as ‘foggy’ or ‘clear’, the latter at the greater depths inside the gel. The colouration of LNO visually observed is evidenced in UV-visible spectrum, by the revelation of well pronounced characteristic peaks in the visible region (500–900 nm). X-ray diffraction (XRD) of powdered LNO is ordered, meaning crystalline in nature, besides its ‘isostructurality’ with similarly grown lanthanum samarium oxalate crystals. The single crystallinity of LNO is established by its oscillation XRD pattern. Thermogravimetric analysis (TGA) and differential scanning colorimetry (DSC) support that LNO loses water of crystallization around 120°C and CO and CO2 around 350–450°C, while the infrared absorption (IR) spectrum of LNO establishes the presence of oxalate (C2O4)2− ions. Energy dispersive X-ray analysis (EDAX) confirms the presence of La and Nd in the sample. X-ray photoelectron spectroscopic (XPS) studies of LNO establish the presence of La and Nd in their respective oxide states. An empirical structure for LNO has been proposed on the basis of these findings. The ‘smokiness’ in the foggy LNO crystal has been attributed due to the ‘gel inclusion’ during the growth process.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.