Articles written in Bulletin of Materials Science

    • Manganese–Schiff base complex immobilized silica materials for electrocatalytic oxygen reduction

      Vellaichamy Ganesan Manas Pal Manoj Tiwari

      More Details Abstract Fulltext PDF

      Curtailment of platinum catalysts loading in fuel cell is a recent central issue. As substitutes, these days several organic metal chelate compounds having featured moieties of M–N4 or M–N2O2 (M = transition metal ion) are being used as cathode catalysts in fuel cells. Here, in this study, we report in detail the electrocatalytic activity of manganese–Schiff base complexes for oxygen reduction reaction in 0.05 M HClO4 at room temperature. Actually, [Mn(salen)]+: [N,N′-bis(salicylaldehyde) ethylenediimino manganese(III)]+ and [Mn(salophen)]+: [N,N′-bis(salicylaldehyde)-1,2-phenylenediimino manganese(III)]+ were introduced into/onto the MCM-41 type silica spheres and used for the electrocatalytic reduction of oxygen. Synthesized materials were characterized by UV–Vis, FT–IR and electrochemical techniques. Significant low overpotential for oxygen reduction in 0.05 M HClO4 on [Mn(salen)]+- and [Mn(salophen)]+-incorporated silica-modified glassy carbon electrodes was observed.

    • Amperometric assay of hydrazine utilizing electro-deposited cobalt hexacyanoferrate nanocrystals on graphene oxide sheets


      More Details Abstract Fulltext PDF

      In-situ electrochemical deposition of cobalt hexacyanoferrate (CoHCF) on graphene oxide (GO) and its application for the electrocatalytic hydrazine determination in real samples are described in this research study. Co$^{2+}$ is immobilized on GO and the resulting material, GO-Co$^{2+}$ is coated on the surface of glassy carbon (GC) electrode. The fabricated electrode (GC/GO-Co$^{2+}$) is subjected to a continuous potential cycling in the range of 0.0–1.0 V which results in the formation of a thin CoHCF film on the surface of GO coated on the GC electrode (abbreviated as GC/GO-CoHCF). The synthesized GO-CoHCF composite material is characterized by Fourier transform infrared and scanning electron microscopy. GC/GO-CoHCF electrode electrocatalytically oxidizes hydrazine at low overpotential (0.63 V) and thisphenomenon is subsequently utilized for the sensitive determination of hydrazine in aqueous solutions. It exhibits a wide linear calibration range (0.1–400 $\mu$M), high sensitivity (0.93 $\mu$A $\mu$M$^{-1}$ cm$^{-2}$) and low limit of detection (17.5 nM) for the determination of hydrazine. Further, this electrode is employed for hydrazine determination in real samples.

  • Bulletin of Materials Science | News

    • Dr Shanti Swarup Bhatnagar for Science and Technology

      Posted on October 12, 2020

      Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
      Chemical Sciences 2020

      Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
      Physical Sciences 2020

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.