• V V Narulkar

      Articles written in Bulletin of Materials Science

    • Characteristics of porous zirconia coated with hydroxyapatite as human bones

      V V Narulkar S Prakash K Chandra

      More Details Abstract Fulltext PDF

      Since hydroxyapatite has excellent biocompatibility and bone bonding ability, porous hydroxyapatite ceramics have been intensively studied. However, porous hydroxyapatite bodies are mechanically weak and brittle, which makes shaping and implantation difficult. One way to solve this problem is to introduce a strong porous network onto which hydroxyapatite coating is applied. In this study, porous zirconia and alumina-added zirconia ceramics were prepared by ceramic slurry infiltration of expanded polystyrene bead compacts, followed by firing at 1500°C. Then slurry of hydroxyapatite–borosilicate glass mixed powder was used to coat the porous ceramics, followed by firing at 1200°C. The porous structures without the coating had high porosities of 51–69%, high pore interconnectivity, and sufficiently large pore window sizes (300–500 𝜇m). The porous ceramics had compressive strengths of 5.3∼36.8 MPa, favourably comparable to the mechanical properties of cancellous bones. In addition, porous hydroxyapatite surface was formed on the top of the composite coating, whereas a borosilicate glass layer was found on the interface. Thus, porous zirconia-based ceramics were modified with a bioactive composite coating for biomedical applications.

    • Ceramic coated Y1 magnesium alloy surfaces by microarc oxidation process for marine applications

      V V Narulkar S Prakash K Chandra

      More Details Abstract Fulltext PDF

      The magnesium alloys occupy an important place in marine applications, but their poor corrosion resistance, wear resistance, hardness and so on, have limited their application. To meet these defects, some techniques are developed. Microarc oxidation is a one such recently developed surface treatment technology under anodic oxidation in which ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is greatly improved. In this paper, a dense ceramic oxide coating, ∼ 20 𝜇m thick, was prepared on an Y1 magnesium alloy through microarc oxidation in a Na3SiO3–Na2WO4–KOH–Na2EDTA electrolytic solution. The property of corrosion resistance of ceramic coating was studied by CS300P electrochemistry–corrosion workstation, and the main impact factor of the corrosion resistance was also analysed. Microstructure and phase composition were analysed by SEM and XRD. The microhardness of the coating was also measured. The basic mechanism of microarc coating formation is explained in brief.

      The results show that the corrosion resistance property of microarc oxidation coating on the Y1 magnesium surface is superior to the original samples in the 3.5 wt% NaCl solutions. The microarc oxidation coating is relatively dense and uniform, mainly composed of MgO, MgAl2O4 and MgSiO3. The microhardness of the Y1 magnesium alloy surface attained 410 HV, which was much larger than that of the original Y1 magnesium alloy without microarc oxidation.

  • Bulletin of Materials Science | News

    • Editorial Note on Continuous Article Publication

      Posted on July 25, 2019

      Click here for Editorial Note on CAP Mode

© 2017-2019 Indian Academy of Sciences, Bengaluru.