V R Satsangi
Articles written in Bulletin of Materials Science
Volume 29 Issue 7 December 2006 pp 709-716 Nanomaterials
Diwakar Chauhan V R Satsangi Sahab Dass Rohit Shrivastav
Nanostructured copper oxide thin films (CuO) were prepared on conducting glass support (SnO2: F overlayer) via sol–gel starting from colloidal solution of copper (II) acetate in ethanol. Films were obtained by dip coating under room conditions (temperature, 25–32°C) and were subsequently sintered in air at different temperatures (400–650°C). The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Average particle size, resistivity and band gap energy were also determined. Photoelectrochemical properties of thin films and their suitability for splitting of water were investigated. Study suggests that thin films of CuO sintered at lower temperatures (≈ 400°C) are better for photoconversion than thick films or the films sintered at much higher temperatures. Plausible explanations have been provided.
Volume 32 Issue 1 February 2009 pp 23-30 Thin Films and Nanomatter
Monika Gupta Vidhika Sharma Jaya Shrivastava Anjana Solanki A P Singh V R Satsangi S Dass Rohit Shrivastav
Nanostructured zinc oxide thin films (ZnO) were prepared on conducting glass support (SnO2: F overlayer) via sol–gel starting from colloidal solution of zinc acetate 2-hydrate in ethanol and 2-methoxy ethanol. Films were obtained by spin coating at 1500 rpm under room conditions (temperature, 28–35°C) and were subsequently sintered in air at three different temperatures (400, 500 and 600°C). The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Average particle size, resistivity and bandgap energy were also determined. Photoelectrochemical properties of thin films and their suitability for splitting of water were investigated. Study suggests that thin films of ZnO, sintered at 600°C are better for photoconversion than the films sintered at 400 or 500°C. Plausible explanations have been provided.
Volume 44, 2021
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2021-2022 Indian Academy of Sciences, Bengaluru.