UTPAL DEKA
Articles written in Bulletin of Materials Science
Volume 44 All articles Published: 30 March 2021 Article ID 0072
Bandgap engineering of PEDOT:PSS/rGO a hole transport layer for SiNWs hybrid solar cells
RABINA BHUJEL SADHNA RAI UTPAL DEKA GAUTAM SARKAR JOYDEEP BISWAS BIBHU P SWAIN
Silicon nanowire (SiNW) hybrid solar cell has been fabricated using PEDOT:PSS and rGO-PEDOT:PSS as the organic hole transport layer. The electrical characterization of the as-fabricated solar cell was done by both dark and photo $J–V$ characteristic curves. Vertically aligned arrays of SiNWs have been synthesized by following the electroless metal-assisted chemical etching method, as confirmed by both the scanning electron microscopy and atomic force microscopy images. The structural properties of SiNWs, PEDOT:PSS and rGO-PEDOT:PSS were characterized with thehelp of X-ray diffraction and Raman characterization techniques. The bandgap of PEDOT:PSS comes out to be 1.77 eV asobtained from the UV–visible and photoluminescence spectra. In addition, the bandgap of PEDOT:PSS was 1.76 eV and for reduced graphene oxide (rGO) it was 0.04 eV, as obtained from the cyclic voltammetry curve. rGO-PEDOT:PSS heterojunction showed excellent $J–V$ characteristic property in the dark and under the illumination of 1 sun. Hence the incorporation of rGO in PEDOT:PSS can improve the photovoltaic properties by increasing the conductivity of the hole transport layer, making a good interface between organic–inorganic heterojunction as well as by reducing the recombination of electron–hole pairs.
Volume 46, 2023
All articles
Continuous Article Publishing mode
Prof. Subi Jacob George — Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru
Chemical Sciences 2020
Prof. Surajit Dhara — School of Physics, University of Hyderabad, Hyderabad
Physical Sciences 2020
Click here for Editorial Note on CAP Mode
© 2022-2023 Indian Academy of Sciences, Bengaluru.